IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.02158.html

Asset-liability management with Epstein-Zin utility under stochastic interest rate and unknown market price of risk

Author

Listed:
  • Wilfried Kuissi-Kamdem

Abstract

This paper solves a consumption-investment choice problem with Epstein-Zin recursive utility under partial information--unobservable market price of risk. The main novelty is the introduction of a terminal liability constraint, a feature directly motivated by practical portfolio management and insurance applications but absent from the recursive utility literature. Such constraint gives rise to a coupled forward-backward stochastic differential equation (FBSDE) whose well-posedness has not been addressed in earlier work. We provide an explicit solution to this FBSDE system--contrasting with the typical existence and uniqueness results with no closed-form expressions in the literature. Under mild additional assumptions, we also establish the Malliavin differentiability of the solution allowing the optimal investment strategy to be expressed as a conditional expectation of random variables that can be efficiently simulated. These results allows us to obtain the explicit expressions of the optimal controls and the value function. Finally, we quantify the utility loss from ignoring learning about the market price of risk, highlighting the economic significance of partial information.

Suggested Citation

  • Wilfried Kuissi-Kamdem, 2025. "Asset-liability management with Epstein-Zin utility under stochastic interest rate and unknown market price of risk," Papers 2511.02158, arXiv.org, revised Dec 2025.
  • Handle: RePEc:arx:papers:2511.02158
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.02158
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yacine AÏT‐SAHALI & Michael W. Brandt, 2001. "Variable Selection for Portfolio Choice," Journal of Finance, American Finance Association, vol. 56(4), pages 1297-1351, August.
    2. Escobar, Marcos & Ferrando, Sebastian & Rubtsov, Alexey, 2016. "Portfolio choice with stochastic interest rates and learning about stock return predictability," International Review of Economics & Finance, Elsevier, vol. 41(C), pages 347-370.
    3. Yihong Xia, 2001. "Learning about Predictability: The Effects of Parameter Uncertainty on Dynamic Asset Allocation," Journal of Finance, American Finance Association, vol. 56(1), pages 205-246, February.
    4. Rüdiger Frey & Abdelali Gabih & Ralf Wunderlich, 2012. "Portfolio Optimization Under Partial Information With Expert Opinions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(01), pages 1-18.
    5. Claudia Ceci & Katia Colaneri, 2025. "Portfolio and reinsurance optimization under unknown market price of risk," Quantitative Finance, Taylor & Francis Journals, vol. 25(2), pages 217-229, February.
    6. Anis Matoussi & Hao Xing, 2018. "Convex duality for Epstein–Zin stochastic differential utility," Mathematical Finance, Wiley Blackwell, vol. 28(4), pages 991-1019, October.
    7. Jérôme B. Detemple & Ren Garcia & Marcel Rindisbacher, 2003. "A Monte Carlo Method for Optimal Portfolios," Journal of Finance, American Finance Association, vol. 58(1), pages 401-446, February.
    8. Larry G. Epstein & Stanley E. Zin, 2013. "Substitution, risk aversion and the temporal behavior of consumption and asset returns: A theoretical framework," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 12, pages 207-239, World Scientific Publishing Co. Pte. Ltd..
    9. Chen, Xingjiang & Ruan, Xinfeng & Zhang, Wenjun, 2021. "Dynamic portfolio choice and information trading with recursive utility," Economic Modelling, Elsevier, vol. 98(C), pages 154-167.
    10. Hao Xing, 2017. "Consumption–investment optimization with Epstein–Zin utility in incomplete markets," Finance and Stochastics, Springer, vol. 21(1), pages 227-262, January.
    11. Martin Herdegen & David Hobson & Joseph Jerome, 2023. "The infinite-horizon investment–consumption problem for Epstein–Zin stochastic differential utility. I: Foundations," Finance and Stochastics, Springer, vol. 27(1), pages 127-158, January.
    12. Ying Hu & Peter Imkeller & Matthias Muller, 2005. "Utility maximization in incomplete markets," Papers math/0508448, arXiv.org.
    13. Rüdiger Frey & Abdelali Gabih & Ralf Wunderlich, 2012. "Portfolio Optimization Under Partial Information With Expert Opinions," World Scientific Book Chapters, in: Matheus R Grasselli & Lane P Hughston (ed.), Finance at Fields, chapter 11, pages 265-282, World Scientific Publishing Co. Pte. Ltd..
    14. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    15. Matoussi, Anis & Xing, Hao, 2018. "Convex duality for Epstein-Zin stochastic differential utility," LSE Research Online Documents on Economics 82519, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dejian Tian & Weidong Tian & Jianjun Zhou & Zimu Zhu, 2025. "Optimal Consumption-Investment with Epstein-Zin Utility under Leverage Constraint," Papers 2509.21929, arXiv.org, revised Oct 2025.
    2. Guanxing Fu & Ulrich Horst, 2025. "Mean Field Portfolio Games with Epstein-Zin Preferences," Papers 2505.07231, arXiv.org.
    3. Dirk Becherer & Wilfried Kuissi-Kamdem & Olivier Menoukeu-Pamen, 2023. "Optimal consumption with labor income and borrowing constraints for recursive preferences," Working Papers hal-04017143, HAL.
    4. Zixin Feng & Dejian Tian, 2021. "Optimal consumption and portfolio selection with Epstein-Zin utility under general constraints," Papers 2111.09032, arXiv.org, revised May 2023.
    5. Joshua Aurand & Yu-Jui Huang, 2019. "Epstein-Zin Utility Maximization on a Random Horizon," Papers 1903.08782, arXiv.org, revised May 2023.
    6. Zixin Feng & Dejian Tian & Harry Zheng, 2024. "Consumption-investment optimization with Epstein-Zin utility in unbounded non-Markovian markets," Papers 2407.19995, arXiv.org, revised May 2025.
    7. Guanxing Fu & Ulrich Horst, 2025. "Mean Field Portfolio Games with Epstein-Zin Preferences," Rationality and Competition Discussion Paper Series 540, CRC TRR 190 Rationality and Competition.
    8. Martin Herdegen & David Hobson & Joseph Jerome, 2025. "Proper solutions for Epstein–Zin stochastic differential utility," Finance and Stochastics, Springer, vol. 29(3), pages 885-932, July.
    9. Dariusz Zawisza, 2020. "On the parabolic equation for portfolio problems," Papers 2003.13317, arXiv.org, revised Oct 2020.
    10. Matoussi, Anis & Xing, Hao, 2018. "Convex duality for Epstein-Zin stochastic differential utility," LSE Research Online Documents on Economics 82519, London School of Economics and Political Science, LSE Library.
    11. Joshua Aurand & Yu‐Jui Huang, 2023. "Epstein‐Zin utility maximization on a random horizon," Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1370-1411, October.
    12. Martin Herdegen & David Hobson & Joseph Jerome, 2023. "The infinite-horizon investment–consumption problem for Epstein–Zin stochastic differential utility. II: Existence, uniqueness and verification for ϑ ∈ ( 0 , 1 ) $\vartheta \in (0,1)$," Finance and Stochastics, Springer, vol. 27(1), pages 159-188, January.
    13. Martin Herdegen & David Hobson & Joseph Jerome, 2023. "The infinite-horizon investment–consumption problem for Epstein–Zin stochastic differential utility. I: Foundations," Finance and Stochastics, Springer, vol. 27(1), pages 127-158, January.
    14. Ying Hu & Xiaomin Shi & Zuo Quan Xu, 2022. "Optimal consumption-investment with coupled constraints on consumption and investment strategies in a regime switching market with random coefficients," Papers 2211.05291, arXiv.org.
    15. Kexin Chen & Kyunghyun Park & Hoi Ying Wong, 2024. "Robust dividend policy: Equivalence of Epstein-Zin and Maenhout preferences," Papers 2406.12305, arXiv.org, revised Oct 2025.
    16. Michael Monoyios & Oleksii Mostovyi, 2022. "Stability of the Epstein-Zin problem," Papers 2208.09895, arXiv.org, revised Apr 2023.
    17. John Y. Campbell & Yeung Lewis Chanb & M. Viceira, 2013. "A multivariate model of strategic asset allocation," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part II, chapter 39, pages 809-848, World Scientific Publishing Co. Pte. Ltd..
    18. Campani, Carlos Heitor & Garcia, René, 2019. "Approximate analytical solutions for consumption/investment problems under recursive utility and finite horizon," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 364-384.
    19. Chen, Xingjiang & Ruan, Xinfeng & Zhang, Wenjun, 2021. "Dynamic portfolio choice and information trading with recursive utility," Economic Modelling, Elsevier, vol. 98(C), pages 154-167.
    20. Min Dai & Yuchao Dong & Yanwei Jia & Xun Yu Zhou, 2023. "Data-Driven Merton's Strategies via Policy Randomization," Papers 2312.11797, arXiv.org, revised May 2025.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.02158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.