IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.00018.html

Branched Signature Model

Author

Listed:
  • Munawar Ali
  • Qi Feng

Abstract

In this paper, we introduce the branched signature model, motivated by the branched rough path framework of [Gubinelli, Journal of Differential Equations, 248(4), 2010], which generalizes the classical geometric rough path. We establish a universal approximation theorem for the branched signature model and demonstrate that iterative compositions of lower-level signature maps can approximate higher-level signatures. Furthermore, building on the existence of the extension map proposed in [Hairer-Kelly. Annales de l'Institue Henri Poincar\'e, Probabilit\'es et Statistiques 51, no. 1 (2015)], we show how to explicitly construct the extension of the original paths into higher-dimensional spaces via a map $\Psi$, so that the branched signature can be realized as the classical geometric signature of the extended path. This framework not only provides an efficient computational scheme for branched signatures but also opens new avenues for data-driven modeling and applications.

Suggested Citation

  • Munawar Ali & Qi Feng, 2025. "Branched Signature Model," Papers 2511.00018, arXiv.org.
  • Handle: RePEc:arx:papers:2511.00018
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.00018
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Julien Guyon & Jordan Lekeufack, 2023. "Volatility is (mostly) path-dependent," Post-Print hal-04373380, HAL.
    2. Omar El Euch & Mathieu Rosenbaum, 2019. "The characteristic function of rough Heston models," Mathematical Finance, Wiley Blackwell, vol. 29(1), pages 3-38, January.
    3. Julien Guyon & Jordan Lekeufack, 2023. "Volatility is (mostly) path-dependent," Quantitative Finance, Taylor & Francis Journals, vol. 23(9), pages 1221-1258, September.
    4. Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
    5. Jim Gatheral & Paul Jusselin & Mathieu Rosenbaum, 2020. "The quadratic rough Heston model and the joint S&P 500/VIX smile calibration problem," Papers 2001.01789, arXiv.org.
    6. Jones, Christopher S., 2003. "The dynamics of stochastic volatility: evidence from underlying and options markets," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 181-224.
    7. Christa Cuchiero & Guido Gazzani & Janka Möller & Sara Svaluto‐Ferro, 2025. "Joint calibration to SPX and VIX options with signature‐based models," Mathematical Finance, Wiley Blackwell, vol. 35(1), pages 161-213, January.
    8. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    9. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ofelia Bonesini & Emilio Ferrucci & Ioannis Gasteratos & Antoine Jacquier, 2024. "Rough differential equations for volatility," Papers 2412.21192, arXiv.org.
    2. Eduardo Abi Jaber & Donatien Hainaut & Edouard Motte, 2025. "The Volterra Stein-Stein model with stochastic interest rates," Papers 2503.01716, arXiv.org, revised Jul 2025.
    3. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Aug 2025.
    4. Eduardo Abi Jaber & Camille Illand & Shaun Xiaoyuan Li, 2024. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03902513, HAL.
    5. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    6. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    7. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
    8. Fabio Baschetti & Giacomo Bormetti & Pietro Rossi, 2025. "Joint deep calibration of the 4-factor PDV model," Papers 2507.09412, arXiv.org.
    9. Eduardo Abi Jaber & Camille Illand & Shaun Xiaoyuan Li, 2024. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Post-Print hal-03902513, HAL.
    10. Jian'an Zhang, 2025. "Tail-Safe Stochastic-Control SPX-VIX Hedging: A White-Box Bridge Between AI Sensitivities and Arbitrage-Free Market Dynamics," Papers 2510.15937, arXiv.org.
    11. Elisa Al`os & `Oscar Bur'es & Rafael de Santiago & Josep Vives, 2025. "Volatility Modeling with Rough Paths: A Signature-Based Alternative to Classical Expansions," Papers 2507.23392, arXiv.org, revised Aug 2025.
    12. Jingtang Ma & Wensheng Yang & Zhenyu Cui, 2021. "Semimartingale and continuous-time Markov chain approximation for rough stochastic local volatility models," Papers 2110.08320, arXiv.org, revised Oct 2021.
    13. Yang, Wensheng & Ma, Jingtang & Cui, Zhenyu, 2025. "A general valuation framework for rough stochastic local volatility models and applications," European Journal of Operational Research, Elsevier, vol. 322(1), pages 307-324.
    14. Eduardo Abi Jaber & Louis-Amand Gérard, 2025. "Signature volatility models: pricing and hedging with Fourier," Post-Print hal-04435238, HAL.
    15. Erindi Allaj & Maria Elvira Mancino & Simona Sanfelici, 2025. "Identifying the number of latent factors of stochastic volatility models," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 48(1), pages 571-602, June.
    16. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Post-Print hal-02946146, HAL.
    17. Eduardo Abi Jaber, 2020. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Papers 2009.10972, arXiv.org, revised May 2022.
    18. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2024. "The rough Hawkes Heston stochastic volatility model," Post-Print hal-03827332, HAL.
    19. Ofelia Bonesini & Antoine Jacquier & Aitor Muguruza, 2024. "Risk premium and rough volatility," Papers 2403.11897, arXiv.org, revised Dec 2025.
    20. Eduardo Abi Jaber & Louis-Amand G'erard, 2024. "Signature volatility models: pricing and hedging with Fourier," Papers 2402.01820, arXiv.org, revised Jun 2025.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.00018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.