IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.23392.html
   My bibliography  Save this paper

Volatility Modeling with Rough Paths: A Signature-Based Alternative to Classical Expansions

Author

Listed:
  • Elisa Al`os
  • `Oscar Bur'es
  • Rafael de Santiago
  • Josep Vives

Abstract

We compare two methodologies for calibrating implied volatility surfaces: a second-order asymptotic expansion method derived via Malliavin calculus, and a data-driven approach based on path signatures from rough path theory. The former, developed in Al\`os et al. (2015), yields efficient and accurate calibration formulas under the assumption that the asset price follows a Heston-type stochastic volatility model. The latter models volatility as a linear functional of the signature of a primary stochastic process, enabling a flexible approximation without requiring a specific parametric form. Our numerical experiments show that the signature-based method achieves calibration accuracy comparable to the asymptotic approach when the true dynamics are Heston. We then test the model in a more general setting where the asset follows a rough Bergomi volatility process-a regime beyond the scope of the asymptotic expansion-and show that the signature approach continues to deliver accurate results. These findings highlight the model-independence, robustness and adaptability of signature-based calibration methods in settings where volatility exhibits rough or non-Markovian features.

Suggested Citation

  • Elisa Al`os & `Oscar Bur'es & Rafael de Santiago & Josep Vives, 2025. "Volatility Modeling with Rough Paths: A Signature-Based Alternative to Classical Expansions," Papers 2507.23392, arXiv.org, revised Aug 2025.
  • Handle: RePEc:arx:papers:2507.23392
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.23392
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous‐time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
    2. E. Benhamou & E. Gobet & M. Miri, 2010. "Expansion Formulas For European Options In A Local Volatility Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(04), pages 603-634.
    3. Elisa Alòs & Rafael De Santiago & Josep Vives, 2015. "Calibration Of Stochastic Volatility Models Via Second-Order Approximation: The Heston Case," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(06), pages 1-31.
    4. Christa Cuchiero & Guido Gazzani & Janka Möller & Sara Svaluto‐Ferro, 2025. "Joint calibration to SPX and VIX options with signature‐based models," Mathematical Finance, Wiley Blackwell, vol. 35(1), pages 161-213, January.
    5. E. Benhamou & E. Gobet & M. Miri, 2009. "Smart expansion and fast calibration for jump diffusions," Finance and Stochastics, Springer, vol. 13(4), pages 563-589, September.
    6. Martin Forde & Antoine Jacquier & Aleksandar Mijatovic, 2009. "Asymptotic formulae for implied volatility in the Heston model," Papers 0911.2992, arXiv.org, revised May 2010.
    7. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    8. Alexey Medvedev & Olivier Scaillet, 2007. "Approximation and Calibration of Short-Term Implied Volatilities Under Jump-Diffusion Stochastic Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 20(2), pages 427-459.
    9. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    10. Wiggins, James B., 1987. "Option values under stochastic volatility: Theory and empirical estimates," Journal of Financial Economics, Elsevier, vol. 19(2), pages 351-372, December.
    11. Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
    12. Masaaki Fukasawa, 2017. "Short-time at-the-money skew and rough fractional volatility," Quantitative Finance, Taylor & Francis Journals, vol. 17(2), pages 189-198, February.
    13. Fabio Antonelli & Sergio Scarlatti, 2009. "Pricing options under stochastic volatility: a power series approach," Finance and Stochastics, Springer, vol. 13(2), pages 269-303, April.
    14. Carole Bernard & Zhenyu Cui & Martin Forde & Antoine Jacquier & Don McLeish & Aleksandar Mijatović, 2013. "Correction note for ‘The large-maturity smile for the Heston model’," Finance and Stochastics, Springer, vol. 17(1), pages 223-224, January.
    15. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. `Oscar Bur'es, 2025. "On the short-time behaviour of up-and-in barrier options using Malliavin calculus," Papers 2510.15423, arXiv.org.
    2. Elisa Alòs & Yan Yang, 2014. "A closed-form option pricing approximation formula for a fractional Heston model," Economics Working Papers 1446, Department of Economics and Business, Universitat Pompeu Fabra.
    3. Elisa Alòs & Rafael De Santiago & Josep Vives, 2012. "Calibration of stochastic volatility models via second order approximation: the Heston model case," Economics Working Papers 1346, Department of Economics and Business, Universitat Pompeu Fabra.
    4. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
    5. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Aug 2025.
    6. Elisa Alòs, 2012. "A decomposition formula for option prices in the Heston model and applications to option pricing approximation," Finance and Stochastics, Springer, vol. 16(3), pages 403-422, July.
    7. Jacquier, Antoine & Roome, Patrick, 2016. "Large-maturity regimes of the Heston forward smile," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1087-1123.
    8. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Tommi Sottinen & Josep Vives, 2019. "Decomposition formula for rough Volterra stochastic volatility models," Papers 1906.07101, arXiv.org, revised Aug 2019.
    9. R. Merino & J. Pospíšil & T. Sobotka & J. Vives, 2018. "Decomposition Formula For Jump Diffusion Models," Journal of Enterprising Culture (JEC), World Scientific Publishing Co. Pte. Ltd., vol. 21(08), pages 1-36, December.
    10. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Josep Vives, 2019. "Decomposition formula for jump diffusion models," Papers 1906.06930, arXiv.org.
    11. Elisa Alòs & Jorge A. León, 2021. "An Intuitive Introduction to Fractional and Rough Volatilities," Mathematics, MDPI, vol. 9(9), pages 1-22, April.
    12. Elisa Alòs, 2009. "A decomposition formula for option prices in the Heston model and applications to option pricing approximation," Economics Working Papers 1188, Department of Economics and Business, Universitat Pompeu Fabra.
    13. Siow Woon Jeng & Adem Kilicman, 2020. "Series Expansion and Fourth-Order Global Padé Approximation for a Rough Heston Solution," Mathematics, MDPI, vol. 8(11), pages 1-26, November.
    14. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    15. Chiang, Min-Hsien & Huang, Hsin-Yi, 2011. "Stock market momentum, business conditions, and GARCH option pricing models," Journal of Empirical Finance, Elsevier, vol. 18(3), pages 488-505, June.
    16. Eric Ghysels & Andrew Harvey & Eric Renault, 1995. "Stochastic Volatility," CIRANO Working Papers 95s-49, CIRANO.
    17. Vicky Henderson & David Hobson, 2001. "Passport options with stochastic volatility," Applied Mathematical Finance, Taylor & Francis Journals, vol. 8(2), pages 97-118.
    18. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    19. Siddiqi, Hammad, 2015. "Anchoring Heuristic in Option Pricing," MPRA Paper 63218, University Library of Munich, Germany.
    20. Bakshi, Gurdip S. & Zhiwu, Chen, 1997. "An alternative valuation model for contingent claims," Journal of Financial Economics, Elsevier, vol. 44(1), pages 123-165, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.23392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.