IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.23392.html
   My bibliography  Save this paper

Volatility Modeling with Rough Paths: A Signature-Based Alternative to Classical Expansions

Author

Listed:
  • Elisa Al`os
  • `Oscar Bur'es
  • Rafael de Santiago
  • Josep Vives

Abstract

We compare two methodologies for calibrating implied volatility surfaces: a second-order asymptotic expansion method derived via Malliavin calculus, and a data-driven approach based on path signatures from rough path theory. The former, developed in Al\`os et al. (2015), yields efficient and accurate calibration formulas under the assumption that the asset price follows a Heston-type stochastic volatility model. The latter models volatility as a linear functional of the signature of a primary stochastic process, enabling a flexible approximation without requiring a specific parametric form. Our numerical experiments show that the signature-based method achieves calibration accuracy comparable to the asymptotic approach when the true dynamics are Heston. We then test the model in a more general setting where the asset follows a rough Bergomi volatility process-a regime beyond the scope of the asymptotic expansion-and show that the signature approach continues to deliver accurate results. These findings highlight the model-independence, robustness and adaptability of signature-based calibration methods in settings where volatility exhibits rough or non-Markovian features.

Suggested Citation

  • Elisa Al`os & `Oscar Bur'es & Rafael de Santiago & Josep Vives, 2025. "Volatility Modeling with Rough Paths: A Signature-Based Alternative to Classical Expansions," Papers 2507.23392, arXiv.org, revised Aug 2025.
  • Handle: RePEc:arx:papers:2507.23392
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.23392
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.23392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.