IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.26165.html

Learning to Manage Investment Portfolios beyond Simple Utility Functions

Author

Listed:
  • Maarten P. Scholl
  • Mahmoud Mahfouz
  • Anisoara Calinescu
  • J. Doyne Farmer

Abstract

While investment funds publicly disclose their objectives in broad terms, their managers optimize for complex combinations of competing goals that go beyond simple risk-return trade-offs. Traditional approaches attempt to model this through multi-objective utility functions, but face fundamental challenges in specification and parameterization. We propose a generative framework that learns latent representations of fund manager strategies without requiring explicit utility specification. Our approach directly models the conditional probability of a fund's portfolio weights, given stock characteristics, historical returns, previous weights, and a latent variable representing the fund's strategy. Unlike methods based on reinforcement learning or imitation learning, which require specified rewards or labeled expert objectives, our GAN-based architecture learns directly from the joint distribution of observed holdings and market data. We validate our framework on a dataset of 1436 U.S. equity mutual funds. The learned representations successfully capture known investment styles, such as "growth" and "value," while also revealing implicit manager objectives. For instance, we find that while many funds exhibit characteristics of Markowitz-like optimization, they do so with heterogeneous realizations for turnover, concentration, and latent factors. To analyze and interpret the end-to-end model, we develop a series of tests that explain the model, and we show that the benchmark's expert labeling are contained in our model's encoding in a linear interpretable way. Our framework provides a data-driven approach for characterizing investment strategies for applications in market simulation, strategy attribution, and regulatory oversight.

Suggested Citation

  • Maarten P. Scholl & Mahmoud Mahfouz & Anisoara Calinescu & J. Doyne Farmer, 2025. "Learning to Manage Investment Portfolios beyond Simple Utility Functions," Papers 2510.26165, arXiv.org.
  • Handle: RePEc:arx:papers:2510.26165
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.26165
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    2. J. Doyne Farmer & Duncan Foley, 2009. "The economy needs agent-based modelling," Nature, Nature, vol. 460(7256), pages 685-686, August.
    3. Platt, Donovan, 2020. "A comparison of economic agent-based model calibration methods," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    4. Kaniel, Ron & Lin, Zihan & Pelger, Markus & Van Nieuwerburgh, Stijn, 2023. "Machine-learning the skill of mutual fund managers," Journal of Financial Economics, Elsevier, vol. 150(1), pages 94-138.
    5. Iwao Maeda & David deGraw & Michiharu Kitano & Hiroyasu Matsushima & Kiyoshi Izumi & Hiroki Sakaji & Atsuo Kato, 2020. "Latent Segmentation of Stock Trading Strategies Using Multi-Modal Imitation Learning," JRFM, MDPI, vol. 13(11), pages 1-12, October.
    6. Magnus Wiese & Robert Knobloch & Ralf Korn & Peter Kretschmer, 2019. "Quant GANs: Deep Generation of Financial Time Series," Papers 1907.06673, arXiv.org, revised Dec 2019.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cong Wang, 2024. "Stock return prediction with multiple measures using neural network models," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-34, December.
    2. Li, Zhiyong & Rao, Xiao, 2023. "Exploring the zoo of predictors for mutual fund performance in China," Pacific-Basin Finance Journal, Elsevier, vol. 77(C).
    3. Donovan Platt, 2022. "Bayesian Estimation of Economic Simulation Models Using Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 599-650, February.
    4. Chenkai Wang & Junji Ren & Peng Yang, 2024. "Alleviating Non-identifiability: a High-fidelity Calibration Objective for Financial Market Simulation with Multivariate Time Series Data," Papers 2407.16566, arXiv.org, revised Jun 2025.
    5. DeMiguel, Victor & Gil-Bazo, Javier & Nogales, Francisco J. & Santos, André A.P., 2023. "Machine learning and fund characteristics help to select mutual funds with positive alpha," Journal of Financial Economics, Elsevier, vol. 150(3).
    6. Hanauer, Matthias X. & Kalsbach, Tobias, 2023. "Machine learning and the cross-section of emerging market stock returns," Emerging Markets Review, Elsevier, vol. 55(C).
    7. Amit Pandey & Anil Kumar Sharma, 2023. "Indian institutional investor's portfolio concentration decision: skill and performance," Journal of Advances in Management Research, Emerald Group Publishing Limited, vol. 21(1), pages 66-95, December.
    8. Zhang, Jinyu & Zhang, Qiaosen & Li, Yong & Wang, Qianchao, 2023. "Sequential Bayesian inference for agent-based models with application to the Chinese business cycle," Economic Modelling, Elsevier, vol. 126(C).
    9. Papadopoulos, Georgios, 2020. "Probing the mechanism: lending rate setting in a data-driven agent-based model," MPRA Paper 102749, University Library of Munich, Germany.
    10. Matthew Oldham, 2019. "Understanding How Short-Termism and a Dynamic Investor Network Affects Investor Returns: An Agent-Based Perspective," Complexity, Hindawi, vol. 2019, pages 1-21, July.
    11. Fragkiskos, Apollon & Krasotkina, Olga & Spilker, Harold D. & Wermers, Russ, 2025. "Private Equity Fund Performance: A Time-Series Approach," Journal of Banking & Finance, Elsevier, vol. 177(C).
    12. Hommes, Cars & He, Mario & Poledna, Sebastian & Siqueira, Melissa & Zhang, Yang, 2025. "CANVAS: A Canadian behavioral agent-based model for monetary policy," Journal of Economic Dynamics and Control, Elsevier, vol. 172(C).
    13. Ha, Yeonjeong & Oh, Haejune, 2024. "Choice for smart investment in mutual funds: Single- or multi-period performance ranks," Finance Research Letters, Elsevier, vol. 59(C).
    14. Li, Bin & Rossi, Alberto G. & Yan, Xuemin (Sterling) & Zheng, Lingling, 2025. "Machine learning from a “Universe” of signals: The role of feature engineering," Journal of Financial Economics, Elsevier, vol. 172(C).
    15. David M. Ritzwoller & Joseph P. Romano, 2019. "Uncertainty in the Hot Hand Fallacy: Detecting Streaky Alternatives to Random Bernoulli Sequences," Papers 1908.01406, arXiv.org, revised Apr 2021.
    16. Darima Fotheringham & Michael A. Wiles, 2023. "The effect of implementing chatbot customer service on stock returns: an event study analysis," Journal of the Academy of Marketing Science, Springer, vol. 51(4), pages 802-822, July.
    17. Christiane Goodfellow & Dirk Schiereck & Steffen Wippler, 2013. "Are behavioural finance equity funds a superior investment? A note on fund performance and market efficiency," Journal of Asset Management, Palgrave Macmillan, vol. 14(2), pages 111-119, April.
    18. Chuan-Hao Hsu & Hung-Gay Fung & Yi-Ping Chang, 2016. "The performance of Taiwanese firms after a share repurchase announcement," Review of Quantitative Finance and Accounting, Springer, vol. 47(4), pages 1251-1269, November.
    19. Kiran Paudel & Atsuyuki Naka, 2023. "Effects of size on the exchange-traded funds performance," Journal of Asset Management, Palgrave Macmillan, vol. 24(6), pages 474-484, October.
    20. Manuel Ammann & Philipp Horsch & David Oesch, 2016. "Competing with Superstars," Management Science, INFORMS, vol. 62(10), pages 2842-2858, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.26165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.