Author
Listed:
- Amit Kumar
- Nisheeth K. Vishnoi
Abstract
We study a two-institution stable matching model in which candidates from two distinct groups are evaluated using partially correlated signals that are group-biased. This extends prior work (which assumes institutions evaluate candidates in an identical manner) to a more realistic setting in which institutions rely on overlapping, but independently processed, criteria. These evaluations could consist of a variety of informative tools such as standardized tests, shared recommendation systems, or AI-based assessments with local noise. Two key parameters govern evaluations: the bias parameter $\beta \in (0,1]$, which models systematic disadvantage faced by one group, and the correlation parameter $\gamma \in [0,1]$, which captures the alignment between institutional rankings. We study the representation ratio, i.e., the ratio of disadvantaged to advantaged candidates selected by the matching process in this setting. Focusing on a regime in which all candidates prefer the same institution, we characterize the large-market equilibrium and derive a closed-form expression for the resulting representation ratio. Prior work shows that when $\gamma = 1$, this ratio scales linearly with $\beta$. In contrast, we show that the representation ratio increases nonlinearly with $\gamma$ and even modest losses in correlation can cause sharp drops in the representation ratio. Our analysis identifies critical $\gamma$-thresholds where institutional selection behavior undergoes discrete transitions, and reveals structural conditions under which evaluator alignment or bias mitigation are most effective. Finally, we show how this framework and results enable interventions for fairness-aware design in decentralized selection systems.
Suggested Citation
Amit Kumar & Nisheeth K. Vishnoi, 2025.
"Matchings Under Biased and Correlated Evaluations,"
Papers
2510.23628, arXiv.org, revised Nov 2025.
Handle:
RePEc:arx:papers:2510.23628
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.23628. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.