IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.21347.html
   My bibliography  Save this paper

Robust Yield Curve Estimation for Mortgage Bonds Using Neural Networks

Author

Listed:
  • Sina Molavipour
  • Alireza M. Javid
  • Cassie Ye
  • Bjorn Lofdahl
  • Mikhail Nechaev

Abstract

Robust yield curve estimation is crucial in fixed-income markets for accurate instrument pricing, effective risk management, and informed trading strategies. Traditional approaches, including the bootstrapping method and parametric Nelson-Siegel models, often struggle with overfitting or instability issues, especially when underlying bonds are sparse, bond prices are volatile, or contain hard-to-remove noise. In this paper, we propose a neural networkbased framework for robust yield curve estimation tailored to small mortgage bond markets. Our model estimates the yield curve independently for each day and introduces a new loss function to enforce smoothness and stability, addressing challenges associated with limited and noisy data. Empirical results on Swedish mortgage bonds demonstrate that our approach delivers more robust and stable yield curve estimates compared to existing methods such as Nelson-Siegel-Svensson (NSS) and Kernel-Ridge (KR). Furthermore, the framework allows for the integration of domain-specific constraints, such as alignment with risk-free benchmarks, enabling practitioners to balance the trade-off between smoothness and accuracy according to their needs.

Suggested Citation

  • Sina Molavipour & Alireza M. Javid & Cassie Ye & Bjorn Lofdahl & Mikhail Nechaev, 2025. "Robust Yield Curve Estimation for Mortgage Bonds Using Neural Networks," Papers 2510.21347, arXiv.org.
  • Handle: RePEc:arx:papers:2510.21347
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.21347
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diebold, Francis X. & Li, Canlin & Yue, Vivian Z., 2008. "Global yield curve dynamics and interactions: A dynamic Nelson-Siegel approach," Journal of Econometrics, Elsevier, vol. 146(2), pages 351-363, October.
    2. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    3. David Bolder & David Stréliski, 1999. "Yield Curve Modelling at the Bank of Canada," Technical Reports 84, Bank of Canada.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lauren Stagnol, 2017. "Introducing global term structure in a risk parity framework," Working Papers hal-04141648, HAL.
    2. Emrah Ahi & Vedat Akgiray & Emrah Sener, 2018. "Robust term structure estimation in developed and emerging markets," Annals of Operations Research, Springer, vol. 260(1), pages 23-49, January.
    3. Lauren Stagnol, 2019. "Extracting global factors from local yield curves," Journal of Asset Management, Palgrave Macmillan, vol. 20(5), pages 341-350, September.
    4. Van Landschoot, Astrid, 2004. "Determinants of euro term structure of credit spreads," Working Paper Series 397, European Central Bank.
    5. Adam Traczyk, 2013. "Financial integration and the term structure of interest rates," Empirical Economics, Springer, vol. 45(3), pages 1267-1305, December.
    6. Ioannis A. Venetis & Avgoustinos Ladas, 2023. "Co-movement and global factors in sovereign bond yields," Bulletin of Applied Economics, Risk Market Journals, vol. 10(2), pages 17-45.
    7. Gauthier, Geneviève & Simonato, Jean-Guy, 2012. "Linearized Nelson–Siegel and Svensson models for the estimation of spot interest rates," European Journal of Operational Research, Elsevier, vol. 219(2), pages 442-451.
    8. William T. Lin & David S. Sun, 2007. "Liquidity-Adjusted Benchmark Yield Curves: A Look at Trading Concentration and Information," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 491-518.
    9. Gourieroux, C. & Monfort, A. & Sufana, R., 2010. "International money and stock market contingent claims," Journal of International Money and Finance, Elsevier, vol. 29(8), pages 1727-1751, December.
    10. Hwang, Youngjin, 2025. "Information content in yield curve dynamics: Implications for monetary policy," Journal of Macroeconomics, Elsevier, vol. 83(C).
    11. Dick, Christian D. & Schmeling, Maik & Schrimpf, Andreas, 2013. "Macro-expectations, aggregate uncertainty, and expected term premia," European Economic Review, Elsevier, vol. 58(C), pages 58-80.
    12. Boril Šopov & Jakub Seidler, 2011. "Yield Curve Dynamics: Regional Common Factor Model," Prague Economic Papers, Prague University of Economics and Business, vol. 2011(2), pages 140-156.
    13. Cai, Lili & Swanson, Norman R., 2011. "In- and out-of-sample specification analysis of spot rate models: Further evidence for the period 1982-2008," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 743-764, September.
    14. Hie Joo Ahn & Leland E. Farmer, 2024. "Disagreement About the Term Structure of Inflation Expectations," Finance and Economics Discussion Series 2024-084, Board of Governors of the Federal Reserve System (U.S.).
    15. Yonas Khanna & André Lucas & Norman Seeger, 2025. "Measuring and Explaining the CDS-Bond Basis Term-Structure Shape and Dynamics," Tinbergen Institute Discussion Papers 25-037/III, Tinbergen Institute.
    16. El-Shagi, Makram & Jiang, Lunan, 2025. "How the PBoC’s new MLF affects the yield curve," Journal of International Money and Finance, Elsevier, vol. 154(C).
    17. Sowmya, Subramaniam & Prasanna, Krishna & Bhaduri, Saumitra, 2016. "Linkages in the term structure of interest rates across sovereign bond markets," Emerging Markets Review, Elsevier, vol. 27(C), pages 118-139.
    18. Recchioni, Maria Cristina & Tedeschi, Gabriele, 2017. "From bond yield to macroeconomic instability: A parsimonious affine model," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1116-1135.
    19. Manfred M. Fischer & Niko Hauzenberger & Florian Huber & Michael Pfarrhofer, 2023. "General Bayesian time‐varying parameter vector autoregressions for modeling government bond yields," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(1), pages 69-87, January.
    20. Luciano Vereda & Hélio Lopes & Jessica Kubrusly & Adrian Pizzinga & Taofik Mohammed Ibrahim, 2014. "Yield Curve Forecasts and the Predictive Power of Macro Variables in a VAR Framework," Journal of Reviews on Global Economics, Lifescience Global, vol. 3, pages 377-393.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.21347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.