IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.03236.html
   My bibliography  Save this paper

Improving S&P 500 Volatility Forecasting through Regime-Switching Methods

Author

Listed:
  • Ava C. Blake
  • Nivika A. Gandhi
  • Anurag R. Jakkula

Abstract

Accurate prediction of financial market volatility is critical for risk management, derivatives pricing, and investment strategy. In this study, we propose a multitude of regime-switching methods to improve the prediction of S&P 500 volatility by capturing structural changes in the market across time. We use eleven years of SPX data, from May 1st, 2014 to May 27th, 2025, to compute daily realized volatility (RV) from 5-minute intraday log returns, adjusted for irregular trading days. To enhance forecast accuracy, we engineered features to capture both historical dynamics and forward-looking market sentiment across regimes. The regime-switching methods include a soft Markov switching algorithm to estimate soft-regime probabilities, a distributional spectral clustering method that uses XGBoost to assign clusters at prediction time, and a coefficient-based soft regime algorithm that extracts HAR coefficients from time segments segmented through the Mood test and clusters through Bayesian GMM for soft regime weights, using XGBoost to predict regime probabilities. Models were evaluated across three time periods--before, during, and after the COVID-19 pandemic. The coefficient-based clustering algorithm outperformed all other models, including the baseline autoregressive model, during all time periods. Additionally, each model was evaluated on its recursive forecasting performance for 5- and 10-day horizons during each time period. The findings of this study demonstrate the value of regime-aware modeling frameworks and soft clustering approaches in improving volatility forecasting, especially during periods of heightened uncertainty and structural change.

Suggested Citation

  • Ava C. Blake & Nivika A. Gandhi & Anurag R. Jakkula, 2025. "Improving S&P 500 Volatility Forecasting through Regime-Switching Methods," Papers 2510.03236, arXiv.org.
  • Handle: RePEc:arx:papers:2510.03236
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.03236
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.03236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.