Improving S&P 500 Volatility Forecasting through Regime-Switching Methods
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hu, Nan & Yin, Xuebao & Yao, Yuhang, 2025. "A novel HAR-type realized volatility forecasting model using graph neural network," International Review of Financial Analysis, Elsevier, vol. 98(C).
- Zhang, Yaojie & Lei, Likun & Wei, Yu, 2020. "Forecasting the Chinese stock market volatility with international market volatilities: The role of regime switching," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Arjun Prakash & Nick James & Max Menzies & Gilad Francis, 2020. "Structural clustering of volatility regimes for dynamic trading strategies," Papers 2004.09963, arXiv.org, revised Nov 2021.
- Luo, Jiawen & Klein, Tony & Ji, Qiang & Hou, Chenghan, 2022. "Forecasting realized volatility of agricultural commodity futures with infinite Hidden Markov HAR models," International Journal of Forecasting, Elsevier, vol. 38(1), pages 51-73.
- Arjun Prakash & Nick James & Max Menzies & Gilad Francis, 2021. "Structural Clustering of Volatility Regimes for Dynamic Trading Strategies," Applied Mathematical Finance, Taylor & Francis Journals, vol. 28(3), pages 236-274, May.
- Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
- Ding, Yi & Kambouroudis, Dimos & McMillan, David G., 2025. "Forecasting realised volatility using regime-switching models," International Review of Economics & Finance, Elsevier, vol. 101(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- He, Mengxi & Wen, Danyan & Xing, Lu & Zhang, Yaojie, 2024. "Industry volatility concentration and the predictability of aggregate stock market volatility," International Review of Economics & Finance, Elsevier, vol. 95(C).
- James, Nick & Menzies, Max, 2023. "Collective infectivity of the pandemic over time and association with vaccine coverage and economic development," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
- Xu, Buyun & Wu, Zhimin, 2025. "Real-time GARCH@CARR: A joint model of returns, realized measure of volatility and current intraday information," The North American Journal of Economics and Finance, Elsevier, vol. 76(C).
- James, Nick & Menzies, Max & Gottwald, Georg A., 2022. "On financial market correlation structures and diversification benefits across and within equity sectors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
- Dutta, Anupam & Uddin, Gazi Salah & Sheng, Lin Wen & Park, Donghyun & Zhu, Xuening, 2024. "Volatility dynamics of agricultural futures markets under uncertainties," Energy Economics, Elsevier, vol. 136(C).
- Lu, Xinjie & Ma, Feng & Wang, Jianqiong & Dong, Dayong, 2022. "Singlehanded or joint race? Stock market volatility prediction," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 734-754.
- Nick James & Max Menzies, 2023. "Collective dynamics, diversification and optimal portfolio construction for cryptocurrencies," Papers 2304.08902, arXiv.org, revised Jun 2023.
- Xiao, Jihong & Wen, Fenghua & Zhao, Yupei & Wang, Xiong, 2021. "The role of US implied volatility index in forecasting Chinese stock market volatility: Evidence from HAR models," International Review of Economics & Finance, Elsevier, vol. 74(C), pages 311-333.
- James, Nick & Menzies, Max & Chin, Kevin, 2022. "Economic state classification and portfolio optimisation with application to stagflationary environments," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
- Daniel Cunha Oliveira & Dylan Sandfelder & Andr'e Fujita & Xiaowen Dong & Mihai Cucuringu, 2025. "Tactical Asset Allocation with Macroeconomic Regime Detection," Papers 2503.11499, arXiv.org, revised Mar 2025.
- Nick James & Max Menzies & Kevin Chin, 2022. "Economic state classification and portfolio optimisation with application to stagflationary environments," Papers 2203.15911, arXiv.org, revised Sep 2022.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- James, Nick & Menzies, Max & Chok, James & Milner, Aaron & Milner, Cas, 2023. "Geometric persistence and distributional trends in worldwide terrorism," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
- Hu, Nan & Yin, Xuebao & Yao, Yuhang, 2025. "A novel HAR-type realized volatility forecasting model using graph neural network," International Review of Financial Analysis, Elsevier, vol. 98(C).
- Luo, Jiawen & Marfatia, Hardik A. & Ji, Qiang & Klein, Tony, 2023. "Co-volatility and asymmetric transmission of risks between the global oil and China's futures markets," Energy Economics, Elsevier, vol. 117(C).
- Jiawen Luo & Shengjie Fu & Oguzhan Cepni & Rangan Gupta, 2025. "The Role of Uncertainty in Forecasting Realized Covariance of US State-Level Stock Returns: A Reverse-MIDAS Approach," Working Papers 202501, University of Pretoria, Department of Economics.
- He, Mengxi & Wang, Yudong & Zeng, Qing & Zhang, Yaojie, 2023. "Forecasting aggregate stock market volatility with industry volatilities: The role of spillover index," Research in International Business and Finance, Elsevier, vol. 65(C).
- Zhang, Yaojie & He, Mengxi & Wang, Yudong & Wen, Danyan, 2025. "Model specification for volatility forecasting benchmark," International Review of Financial Analysis, Elsevier, vol. 97(C).
- Jiawen Luo & Tony Klein & Thomas Walther & Qiang Ji, 2024.
"Forecasting realized volatility of crude oil futures prices based on machine learning,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1422-1446, August.
- Luo, Jiawen & Klein, Tony & Walther, Thomas & Ji, Qiang, 2021. "Forecasting Realized Volatility of Crude Oil Futures Prices based on Machine Learning," QBS Working Paper Series 2021/04, Queen's University Belfast, Queen's Business School.
- Liu, Wenwen & Gui, Yiming & Qiao, Gaoxiu, 2022. "Dynamics lead-lag relationship of jumps among Chinese stock index and futures market during the Covid-19 epidemic," Research in International Business and Finance, Elsevier, vol. 61(C).
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-FMK-2025-10-13 (Financial Markets)
- NEP-FOR-2025-10-13 (Forecasting)
- NEP-MAC-2025-10-13 (Macroeconomics)
- NEP-RMG-2025-10-13 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.03236. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/arx/papers/2510.03236.html