IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.22985.html
   My bibliography  Save this paper

Forecasting Liquidity Withdraw with Machine Learning Models

Author

Listed:
  • Haochuan

    (Kevin)

  • Wang

Abstract

Liquidity withdrawal is a critical indicator of market fragility. In this project, I test a framework for forecasting liquidity withdrawal at the individual-stock level, ranging from less liquid stocks to highly liquid large-cap tickers, and evaluate the relative performance of competing model classes in predicting short-horizon order book stress. We introduce the Liquidity Withdrawal Index (LWI) -- defined as the ratio of order cancellations to the sum of standing depth and new additions at the best quotes -- as a bounded, interpretable measure of transient liquidity removal. Using Nasdaq market-by-order (MBO) data, we compare a spectrum of approaches: linear benchmarks (AR, HAR), and non-linear tree ensembles (XGBoost), across horizons ranging from 250\,ms to 5\,s. Beyond predictive accuracy, our results provide insights into order placement and cancellation dynamics, identify regimes where linear versus non-linear signals dominate, and highlight how early-warning indicators of liquidity withdrawal can inform both market surveillance and execution.

Suggested Citation

  • Haochuan & Wang, 2025. "Forecasting Liquidity Withdraw with Machine Learning Models," Papers 2509.22985, arXiv.org.
  • Handle: RePEc:arx:papers:2509.22985
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.22985
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.22985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.