Author
Listed:
- Lars van der Laan
- Nathan Kallus
- Aur'elien Bibaut
Abstract
Inverse reinforcement learning (IRL) aims to explain observed behavior by uncovering an underlying reward. In the maximum-entropy or Gumbel-shocks-to-reward frameworks, this amounts to fitting a reward function and a soft value function that together satisfy the soft Bellman consistency condition and maximize the likelihood of observed actions. While this perspective has had enormous impact in imitation learning for robotics and understanding dynamic choices in economics, practical learning algorithms often involve delicate inner-loop optimization, repeated dynamic programming, or adversarial training, all of which complicate the use of modern, highly expressive function approximators like neural nets and boosting. We revisit softmax IRL and show that the population maximum-likelihood solution is characterized by a linear fixed-point equation involving the behavior policy. This observation reduces IRL to two off-the-shelf supervised learning problems: probabilistic classification to estimate the behavior policy, and iterative regression to solve the fixed point. The resulting method is simple and modular across function approximation classes and algorithms. We provide a precise characterization of the optimal solution, a generic oracle-based algorithm, finite-sample error bounds, and empirical results showing competitive or superior performance to MaxEnt IRL.
Suggested Citation
Lars van der Laan & Nathan Kallus & Aur'elien Bibaut, 2025.
"Inverse Reinforcement Learning Using Just Classification and a Few Regressions,"
Papers
2509.21172, arXiv.org.
Handle:
RePEc:arx:papers:2509.21172
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.21172. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.