IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.18488.html
   My bibliography  Save this paper

Modelling Asset Price Dynamics with Investor Inertia: Diffusion with Advection and Fourth-Order Extension

Author

Listed:
  • Diego da Silva Santos
  • Luiz Gustavo Bastos Pinho

Abstract

Standard models of asset price dynamics, such as geometric Brownian motion (see, for example, Osborne, 1959, Samuelson, 2016), do not formally incorporate investor inertia. This paper presents a two-stage framework for modelling this behaviour. First, we establish a microfoundation for the classic diffusion-with-advection model by representing the asset's log price as a three-state random walk (up, down or neutral). While this derivation offers a clear behavioural origin for drift and volatility, it is ultimately limited by its Gaussian nature and fails to capture the heavy tails (leptokurtosis) observed in financial markets. To address this issue, we introduce and apply a fourth-order extension inspired by diffusion-with-retention models (Bevilacqua, 2011), where a more complex representation of inertia generates non-Gaussian dynamics. Through an empirical application using Brazilian PETR4.SA data, we demonstrate that this extended model significantly outperforms the original in fitting the real distribution of returns. Our findings suggest that investor inertia is a dual concept capable of explaining both standard market trends and extreme events.

Suggested Citation

  • Diego da Silva Santos & Luiz Gustavo Bastos Pinho, 2025. "Modelling Asset Price Dynamics with Investor Inertia: Diffusion with Advection and Fourth-Order Extension," Papers 2509.18488, arXiv.org, revised Nov 2025.
  • Handle: RePEc:arx:papers:2509.18488
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.18488
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    2. Brad M. Barber & Terrance Odean, 2000. "Trading Is Hazardous to Your Wealth: The Common Stock Investment Performance of Individual Investors," Journal of Finance, American Finance Association, vol. 55(2), pages 773-806, April.
    3. Praetz, Peter D, 1972. "The Distribution of Share Price Changes," The Journal of Business, University of Chicago Press, vol. 45(1), pages 49-55, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
    2. Till Massing, 2019. "What is the best Lévy model for stock indices? A comparative study with a view to time consistency," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 33(3), pages 277-344, September.
    3. Kaehler, Jürgen, 1991. "Modelling and forecasting exchange-rate volatility with ARCH-type models," ZEW Discussion Papers 91-02, ZEW - Leibniz Centre for European Economic Research.
    4. Kevin Fergusson & Eckhard Platen, 2006. "On the Distributional Characterization of Daily Log-Returns of a World Stock Index," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(1), pages 19-38.
    5. Kaehler, Jürgen & Marnet, Volker, 1993. "Markov-switching models for exchange-rate dynamics and the pricing of foreign-currency options," ZEW Discussion Papers 93-03, ZEW - Leibniz Centre for European Economic Research.
    6. Ibragimov, Rustam & Walden, Johan, 2007. "The limits of diversification when losses may be large," Scholarly Articles 2624460, Harvard University Department of Economics.
    7. Bo Li & Guangle Du, 2024. "Reaction Function for Financial Market Reacting to Events or Information," Annals of Data Science, Springer, vol. 11(4), pages 1265-1290, August.
    8. Baller, Stefanie & Entrop, Oliver & Schober, Alexander & Wilkens, Marco, 2017. "What drives performance in the speculative market of short-term exchange-traded retail products?," Passauer Diskussionspapiere, Betriebswirtschaftliche Reihe B-26-17, University of Passau, Faculty of Business and Economics.
    9. Baixauli, J. Samuel & Alvarez, Susana, 2004. "Analysis of the conditional stock-return distribution under incomplete specification," European Journal of Operational Research, Elsevier, vol. 155(2), pages 276-283, June.
    10. Göncü, Ahmet & Karahan, Mehmet Oğuz & Kuzubaş, Tolga Umut, 2016. "A comparative goodness-of-fit analysis of distributions of some Lévy processes and Heston model to stock index returns," The North American Journal of Economics and Finance, Elsevier, vol. 36(C), pages 69-83.
    11. Saralees Nadarajah, 2012. "Models for stock returns," Quantitative Finance, Taylor & Francis Journals, vol. 12(3), pages 411-424, February.
    12. Renata Rendek, 2013. "Modeling Diversified Equity Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 23, July-Dece.
    13. Christian Gourieroux & Razvan Sufana, 2004. "Derivative Pricing with Multivariate Stochastic Volatility : Application to Credit Risk," Working Papers 2004-31, Center for Research in Economics and Statistics.
    14. Jimmy E. Hilliard & Jitka Hilliard, 2018. "Rebalancing versus buy and hold: theory, simulation and empirical analysis," Review of Quantitative Finance and Accounting, Springer, vol. 50(1), pages 1-32, January.
    15. Eom, Cheoljun & Kaizoji, Taisei & Scalas, Enrico, 2019. "Fat tails in financial return distributions revisited: Evidence from the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    16. Simon Hurst & Eckhard Platen & Svetlozar Rachev, 1997. "Subordinated Market Index Models: A Comparison," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 4(2), pages 97-124, May.
    17. Eckhard Platen & Gerhard Stahl, 2003. "A Structure for General and Specific Market Risk," Computational Statistics, Springer, vol. 18(3), pages 355-373, September.
    18. Longin, Francois, 2005. "The choice of the distribution of asset returns: How extreme value theory can help?," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 1017-1035, April.
    19. Ibragimov, Rustam & Walden, Johan, 2007. "The limits of diversification when losses may be large," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2551-2569, August.
    20. Tianyang Wang & James Dyer & Warren Hahn, 2015. "A copula-based approach for generating lattices," Review of Derivatives Research, Springer, vol. 18(3), pages 263-289, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.18488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.