IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.11528.html
   My bibliography  Save this paper

Dynamic Factor Models with Forward-Looking Views

Author

Listed:
  • Anas Abdelhakmi
  • Andrew E. B. Lim

Abstract

Prediction models calibrated using historical data may forecast poorly if the dynamics of the present and future differ from observations in the past. For this reason, predictions can be improved if information like forward looking views about the state of the system are used to refine the forecast. We develop an approach for combining a dynamic factor model for risky asset prices calibrated on historical data, and noisy expert views of future values of the factors/covariates in the model, and study the implications for dynamic portfolio choice. By exploiting the graphical structure linking factors, asset prices, and views, we derive closed-form expressions for the dynamics of the factor and price processes after conditioning on the views. For linear factor models, the price process becomes a time-inhomogeneous affine process with a new covariate formed from the views. We establish a novel theoretical connection between the conditional factor process and a process we call a Mean-Reverting Bridge (MrB), an extension of the classical Brownian bridge. We derive the investor's optimal portfolio strategy and show that views influence both the myopic mean-variance term and the intertemporal hedge. The optimal dynamic portfolio when the long-run mean of the expected return is uncertain and learned online from data is also derived. More generally, our framework offers a generalizable approach for embedding forward-looking information about covariates in a dynamic factor model.

Suggested Citation

  • Anas Abdelhakmi & Andrew E. B. Lim, 2025. "Dynamic Factor Models with Forward-Looking Views," Papers 2509.11528, arXiv.org.
  • Handle: RePEc:arx:papers:2509.11528
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.11528
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.11528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.