IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.08467.html
   My bibliography  Save this paper

An Interpretable Deep Learning Model for General Insurance Pricing

Author

Listed:
  • Patrick J. Laub
  • Tu Pho
  • Bernard Wong

Abstract

This paper introduces the Actuarial Neural Additive Model, an inherently interpretable deep learning model for general insurance pricing that offers fully transparent and interpretable results while retaining the strong predictive power of neural networks. This model assigns a dedicated neural network (or subnetwork) to each individual covariate and pairwise interaction term to independently learn its impact on the modeled output while implementing various architectural constraints to allow for essential interpretability (e.g. sparsity) and practical requirements (e.g. smoothness, monotonicity) in insurance applications. The development of our model is grounded in a solid foundation, where we establish a concrete definition of interpretability within the insurance context, complemented by a rigorous mathematical framework. Comparisons in terms of prediction accuracy are made with traditional actuarial and state-of-the-art machine learning methods using both synthetic and real insurance datasets. The results show that the proposed model outperforms other methods in most cases while offering complete transparency in its internal logic, underscoring the strong interpretability and predictive capability.

Suggested Citation

  • Patrick J. Laub & Tu Pho & Bernard Wong, 2025. "An Interpretable Deep Learning Model for General Insurance Pricing," Papers 2509.08467, arXiv.org.
  • Handle: RePEc:arx:papers:2509.08467
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.08467
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ronald Richman & Mario V. Wüthrich, 2023. "LocalGLMnet: interpretable deep learning for tabular data," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2023(1), pages 71-95, January.
    2. Denuit, Michel & Lang, Stefan, 2004. "Non-life rate-making with Bayesian GAMs," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 627-647, December.
    3. Al-Mudafer, Muhammed Taher & Avanzi, Benjamin & Taylor, Greg & Wong, Bernard, 2022. "Stochastic loss reserving with mixture density neural networks," Insurance: Mathematics and Economics, Elsevier, vol. 105(C), pages 144-174.
    4. Richman, Ronald & Wüthrich, Mario V., 2024. "Smoothness and monotonicity constraints for neural networks using ICEnet," Annals of Actuarial Science, Cambridge University Press, vol. 18(3), pages 712-739, November.
    5. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    6. Benjamin Avanzi & Eric Dong & Patrick J. Laub & Bernard Wong, 2024. "Distributional Refinement Network: Distributional Forecasting via Deep Learning," Papers 2406.00998, arXiv.org.
    7. repec:cup:bracjl:v:27:y:2022:i::p:-_21 is not listed on IDEAS
    8. R. A. Rigby & D. M. Stasinopoulos, 2005. "Generalized additive models for location, scale and shape," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 507-554, June.
    9. Pradeep Ravikumar & John Lafferty & Han Liu & Larry Wasserman, 2009. "Sparse additive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 1009-1030, November.
    10. Kraus, Mathias & Tschernutter, Daniel & Weinzierl, Sven & Zschech, Patrick, 2024. "Interpretable generalized additive neural networks," European Journal of Operational Research, Elsevier, vol. 317(2), pages 303-316.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin Avanzi & Yanfeng Li & Bernard Wong & Alan Xian, 2022. "Ensemble distributional forecasting for insurance loss reserving," Papers 2206.08541, arXiv.org, revised Jun 2024.
    2. Benjamin Avanzi & Eric Dong & Patrick J. Laub & Bernard Wong, 2024. "Distributional Refinement Network: Distributional Forecasting via Deep Learning," Papers 2406.00998, arXiv.org.
    3. Nadja Klein & Michel Denuit & Stefan Lang & Thomas Kneib, 2013. "Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape," Working Papers 2013-24, Faculty of Economics and Statistics, Universität Innsbruck.
    4. Klein, Nadja & Denuit, Michel & Lang, Stefan & Kneib, Thomas, 2014. "Nonlife ratemaking and risk management with Bayesian generalized additive models for location, scale, and shape," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 225-249.
    5. Klein, Nadja & Denuit, Michel & Lang, Stefan & Kneib, Thomas, 2013. "Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape," LIDAM Discussion Papers ISBA 2013045, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Nadja Klein & Thomas Kneib & Stefan Lang, 2015. "Bayesian Generalized Additive Models for Location, Scale, and Shape for Zero-Inflated and Overdispersed Count Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 405-419, March.
    7. Simon Hirsch, 2025. "Online Multivariate Regularized Distributional Regression for High-dimensional Probabilistic Electricity Price Forecasting," Papers 2504.02518, arXiv.org, revised Oct 2025.
    8. Ronald Richman & Salvatore Scognamiglio & Mario V. Wuthrich, 2024. "The Credibility Transformer," Papers 2409.16653, arXiv.org.
    9. Ding, Hui & Zhang, Jian & Zhang, Riquan, 2022. "Nonparametric variable screening for multivariate additive models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    10. Micha{l} Narajewski & Florian Ziel, 2020. "Ensemble Forecasting for Intraday Electricity Prices: Simulating Trajectories," Papers 2005.01365, arXiv.org, revised Aug 2020.
    11. Fan, Jianqing & Feng, Yang & Xia, Lucy, 2020. "A projection-based conditional dependence measure with applications to high-dimensional undirected graphical models," Journal of Econometrics, Elsevier, vol. 218(1), pages 119-139.
    12. Matteo Malavasi & Gareth W. Peters & Stefan Treuck & Pavel V. Shevchenko & Jiwook Jang & Georgy Sofronov, 2024. "Cyber Risk Taxonomies: Statistical Analysis of Cybersecurity Risk Classifications," Papers 2410.05297, arXiv.org.
    13. Marra, Giampiero & Radice, Rosalba, 2017. "Bivariate copula additive models for location, scale and shape," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 99-113.
    14. Westgate, Bradford S. & Woodard, Dawn B. & Matteson, David S. & Henderson, Shane G., 2016. "Large-network travel time distribution estimation for ambulances," European Journal of Operational Research, Elsevier, vol. 252(1), pages 322-333.
    15. Alexander Henzi & Johanna F. Ziegel & Tilmann Gneiting, 2021. "Isotonic distributional regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 963-993, November.
    16. Muschinski, Thomas & Mayr, Georg J. & Simon, Thorsten & Umlauf, Nikolaus & Zeileis, Achim, 2024. "Cholesky-based multivariate Gaussian regression," Econometrics and Statistics, Elsevier, vol. 29(C), pages 261-281.
    17. Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2018. "Unravelling the predictive power of telematics data in car insurance pricing," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1275-1304, November.
    18. A. Ford Ramsey & Yong Liu, 2023. "Linear pooling of potentially related density forecasts in crop insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 90(3), pages 769-788, September.
    19. Alexander Razen & Wolfgang Brunauer & Nadja Klein & Thomas Kneib & Stefan Lang & Nikolaus Umlauf, 2014. "Statistical Risk Analysis for Real Estate Collateral Valuation using Bayesian Distributional and Quantile Regression," Working Papers 2014-12, Faculty of Economics and Statistics, Universität Innsbruck.
    20. Narajewski, Michał & Ziel, Florian, 2020. "Ensemble forecasting for intraday electricity prices: Simulating trajectories," Applied Energy, Elsevier, vol. 279(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.08467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.