IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2508.20225.html
   My bibliography  Save this paper

Optimal Quoting under Adverse Selection and Price Reading

Author

Listed:
  • Alexander Barzykin
  • Philippe Bergault
  • Olivier Gu'eant
  • Malo Lemmel

Abstract

Over the past decade, many dealers have implemented algorithmic models to automatically respond to RFQs and manage flows originating from their electronic platforms. In parallel, building on the foundational work of Ho and Stoll, and later Avellaneda and Stoikov, the academic literature on market making has expanded to address trade size distributions, client tiering, complex price dynamics, alpha signals, and the internalization versus externalization dilemma in markets with dealer-to-client and interdealer-broker segments. In this paper, we tackle two critical dimensions: adverse selection, arising from the presence of informed traders, and price reading, whereby the market maker's own quotes inadvertently reveal the direction of their inventory. These risks are well known to practitioners, who routinely face informed flows and algorithms capable of extracting signals from quoting behavior. Yet they have received limited attention in the quantitative finance literature, beyond stylized toy models with limited actionability. Extending the existing literature, we propose a tractable and implementable framework that enables market makers to adjust their quotes with greater awareness of informational risk.

Suggested Citation

  • Alexander Barzykin & Philippe Bergault & Olivier Gu'eant & Malo Lemmel, 2025. "Optimal Quoting under Adverse Selection and Price Reading," Papers 2508.20225, arXiv.org.
  • Handle: RePEc:arx:papers:2508.20225
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2508.20225
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.20225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.