IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2508.09040.html
   My bibliography  Save this paper

Bias correction for Chatterjee's graph-based correlation coefficient

Author

Listed:
  • Mona Azadkia
  • Leihao Chen
  • Fang Han

Abstract

Azadkia and Chatterjee (2021) recently introduced a simple nearest neighbor (NN) graph-based correlation coefficient that consistently detects both independence and functional dependence. Specifically, it approximates a measure of dependence that equals 0 if and only if the variables are independent, and 1 if and only if they are functionally dependent. However, this NN estimator includes a bias term that may vanish at a rate slower than root-$n$, preventing root-$n$ consistency in general. In this article, we propose a bias correction approach that overcomes this limitation, yielding an NN-based estimator that is both root-$n$ consistent and asymptotically normal.

Suggested Citation

  • Mona Azadkia & Leihao Chen & Fang Han, 2025. "Bias correction for Chatterjee's graph-based correlation coefficient," Papers 2508.09040, arXiv.org.
  • Handle: RePEc:arx:papers:2508.09040
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2508.09040
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.09040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.