IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.17848.html
   My bibliography  Save this paper

Explainable Graph Neural Networks via Structural Externalities

Author

Listed:
  • Lijun Wu
  • Dong Hao
  • Zhiyi Fan

Abstract

Graph Neural Networks (GNNs) have achieved outstanding performance across a wide range of graph-related tasks. However, their "black-box" nature poses significant challenges to their explainability, and existing methods often fail to effectively capture the intricate interaction patterns among nodes within the network. In this work, we propose a novel explainability framework, GraphEXT, which leverages cooperative game theory and the concept of social externalities. GraphEXT partitions graph nodes into coalitions, decomposing the original graph into independent subgraphs. By integrating graph structure as an externality and incorporating the Shapley value under externalities, GraphEXT quantifies node importance through their marginal contributions to GNN predictions as the nodes transition between coalitions. Unlike traditional Shapley value-based methods that primarily focus on node attributes, our GraphEXT places greater emphasis on the interactions among nodes and the impact of structural changes on GNN predictions. Experimental studies on both synthetic and real-world datasets show that GraphEXT outperforms existing baseline methods in terms of fidelity across diverse GNN architectures , significantly enhancing the explainability of GNN models.

Suggested Citation

  • Lijun Wu & Dong Hao & Zhiyi Fan, 2025. "Explainable Graph Neural Networks via Structural Externalities," Papers 2507.17848, arXiv.org.
  • Handle: RePEc:arx:papers:2507.17848
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.17848
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.17848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.