Author
Listed:
- Sourojyoti Barick
- Sudip Ratan Chandra
Abstract
This paper explores a comprehensive class of time-changed stochastic processes constructed by subordinating Brownian motion with Levy processes, where the subordination is further governed by stochastic arrival mechanisms such as the Cox Ingersoll Ross (CIR) and Chan Karolyi Longstaff Sanders (CKLS) processes. These models extend classical jump frameworks like the Variance Gamma (VG) and CGMY processes, allowing for more flexible modeling of market features such as jump clustering, heavy tails, and volatility persistence. We first revisit the theory of Levy subordinators and establish strong consistency results for the VG process under Gamma subordination. Building on this, we prove asymptotic normality for both the VG and VGSA (VG with stochastic arrival) processes when the arrival process follows CIR or CKLS dynamics. The analysis is then extended to the more general CGMY process under stochastic arrival, for which we derive analogous consistency and limit theorems under positivity and regularity conditions on the arrival process. A simulation study accompanies the theoretical work, confirming our results through Monte Carlo experiments, with visualizations and normality testing (via Shapiro-Wilk statistics) that show approximate Gaussian behavior even for processes driven by heavy-tailed jumps. This work provides a rigorous and unified probabilistic framework for analyzing subordinated models with stochastic time changes, with applications to financial modeling and inference under uncertainty.
Suggested Citation
Sourojyoti Barick & Sudip Ratan Chandra, 2025.
"Analysing Models for Volatility Clustering with Subordinated Processes: VGSA and Beyond,"
Papers
2507.17431, arXiv.org.
Handle:
RePEc:arx:papers:2507.17431
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.17431. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.