Author
Listed:
- Daniel Molitor
- Samantha Gold
Abstract
Adaptive experiments such as multi-armed bandits offer efficiency gains over traditional randomized experiments but pose two major challenges: invalid inference on the Average Treatment Effect (ATE) due to adaptive sampling and low statistical power for sub-optimal treatments. We address both issues by extending the Mixture Adaptive Design framework (arXiv:2311.05794). First, we propose MADCovar, a covariate-adjusted ATE estimator that is unbiased and preserves anytime-valid inference guarantees while substantially improving ATE precision. Second, we introduce MADMod, which dynamically reallocates samples to underpowered arms, enabling more balanced statistical power across treatments without sacrificing valid inference. Both methods retain MAD's core advantage of constructing asymptotic confidence sequences (CSs) that allow researchers to continuously monitor ATE estimates and stop data collection once a desired precision or significance criterion is met. Empirically, we validate both methods using simulations and real-world data. In simulations, MADCovar reduces CS width by up to $60\%$ relative to MAD. In a large-scale political RCT with $\approx32,000$ participants, MADCovar achieves similar precision gains. MADMod improves statistical power and inferential precision across all treatment arms, particularly for suboptimal treatments. Simulations show that MADMod sharply reduces Type II error while preserving the efficiency benefits of adaptive allocation. Together, MADCovar and MADMod make adaptive experiments more practical, reliable, and efficient for applied researchers across many domains. Our proposed methods are implemented through an open-source software package.
Suggested Citation
Daniel Molitor & Samantha Gold, 2025.
"Anytime-Valid Inference in Adaptive Experiments: Covariate Adjustment and Balanced Power,"
Papers
2506.20523, arXiv.org, revised Jun 2025.
Handle:
RePEc:arx:papers:2506.20523
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.20523. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.