IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.18210.html
   My bibliography  Save this paper

American options valuation in time-dependent jump-diffusion models via integral equations and characteristic functions

Author

Listed:
  • Andrey Itkin

Abstract

Despite significant advancements in machine learning for derivative pricing, the efficient and accurate valuation of American options remains a persistent challenge due to complex exercise boundaries, near-expiry behavior, and intricate contractual features. This paper extends a semi-analytical approach for pricing American options in time-inhomogeneous models, including pure diffusions, jump-diffusions, and Levy processes. Building on prior work, we derive and solve Volterra integral equations of the second kind to determine the exercise boundary explicitly, offering a computationally superior alternative to traditional finite-difference and Monte Carlo methods. We address key open problems: (1) extending the decomposition method, i.e. splitting the American option price into its European counterpart and an early exercise premium, to general jump-diffusion and Levy models; (2) handling cases where closed-form transition densities are unavailable by leveraging characteristic functions via, e.g., the COS method; and (3) generalizing the framework to multidimensional diffusions. Numerical examples demonstrate the method's efficiency and robustness. Our results underscore the advantages of the integral equation approach for large-scale industrial applications, while resolving some limitations of existing techniques.

Suggested Citation

  • Andrey Itkin, 2025. "American options valuation in time-dependent jump-diffusion models via integral equations and characteristic functions," Papers 2506.18210, arXiv.org, revised Jun 2025.
  • Handle: RePEc:arx:papers:2506.18210
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.18210
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrey Itkin & Yerkin Kitapbayev, 2025. "Floating exercise boundaries for American options in time-inhomogeneous models," Papers 2502.00740, arXiv.org, revised Jul 2025.
    2. Wendong Zheng & Pingping Zeng, 2016. "Pricing timer options and variance derivatives with closed-form partial transform under the 3/2 model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(5), pages 344-373, September.
    3. Andrey Itkin & Alexander Lipton & Dmitry Muravey, 2021. "Generalized Integral Transforms in Mathematical Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 12147, April.
    4. Carl Chiarella & Adam Kucera & Andrew Ziogas, 2004. "A Survey of the Integral Representation of American Option Prices," Research Paper Series 118, Quantitative Finance Research Centre, University of Technology, Sydney.
    5. Andrey Itkin & Peter Carr, 2010. "Pricing swaps and options on quadratic variation under stochastic time change models—discrete observations case," Review of Derivatives Research, Springer, vol. 13(2), pages 141-176, July.
    6. Sergei Levendorskiǐ, 2008. "American and European options in multi-factor jump-diffusion models, near expiry," Finance and Stochastics, Springer, vol. 12(4), pages 541-560, October.
    7. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iro Ren'e Kouarfate & Michael A. Kouritzin & Anne MacKay, 2020. "Explicit solution simulation method for the 3/2 model," Papers 2009.09058, arXiv.org, revised Jan 2021.
    2. Jan Baldeaux, 2011. "Exact Simulation of the 3/2 Model," Papers 1105.3297, arXiv.org, revised May 2011.
    3. Carl Chiarella & Andrew Ziogas, 2009. "American Call Options Under Jump-Diffusion Processes - A Fourier Transform Approach," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(1), pages 37-79.
    4. Peter Carr & Andrey Itkin, 2019. "ADOL - Markovian approximation of rough lognormal model," Papers 1904.09240, arXiv.org.
    5. Andrey Itkin, 2013. "New solvable stochastic volatility models for pricing volatility derivatives," Review of Derivatives Research, Springer, vol. 16(2), pages 111-134, July.
    6. Wendong Zheng & Pingping Zeng, 2015. "Pricing timer options and variance derivatives with closed-form partial transform under the 3/2 model," Papers 1504.08136, arXiv.org.
    7. Jan Baldeaux & Alexander Badran, 2012. "Consistent Modeling of VIX and Equity Derivatives Using a 3/2 Plus Jumps Model," Research Paper Series 306, Quantitative Finance Research Centre, University of Technology, Sydney.
    8. Hyungbin Park & Heejun Yeo, 2022. "Dynamic and static fund separations and their stability for long-term optimal investments," Papers 2212.00391, arXiv.org, revised Mar 2023.
    9. Alexander Lipton & Artur Sepp, 2022. "Toward an efficient hybrid method for pricing barrier options on assets with stochastic volatility," Papers 2202.07849, arXiv.org.
    10. Wendong Zheng & Pingping Zeng, 2016. "Pricing timer options and variance derivatives with closed-form partial transform under the 3/2 model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(5), pages 344-373, September.
    11. Baldeaux, Jan & Grasselli, Martino & Platen, Eckhard, 2015. "Pricing currency derivatives under the benchmark approach," Journal of Banking & Finance, Elsevier, vol. 53(C), pages 34-48.
    12. Leunglung Chan & Eckhard Platen, 2010. "Exact Pricing and Hedging Formulas of Long Dated Variance Swaps under a $3/2$ Volatility Model," Papers 1007.2968, arXiv.org, revised Jan 2011.
    13. Zhenyu Cui & J. Lars Kirkby & Guanghua Lian & Duy Nguyen, 2017. "Integral Representation Of Probability Density Of Stochastic Volatility Models And Timer Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(08), pages 1-32, December.
    14. Jan Baldeaux & Dale Roberts, 2012. "Quasi-Monte Carol Methods for the Heston Model," Research Paper Series 307, Quantitative Finance Research Centre, University of Technology, Sydney.
    15. Jan Baldeaux & Alexander Badran, 2014. "Consistent Modelling of VIX and Equity Derivatives Using a 3/2 plus Jumps Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 21(4), pages 299-312, September.
    16. Pingping Zeng & Ziqing Xu & Pingping Jiang & Yue Kuen Kwok, 2023. "Analytical solvability and exact simulation in models with affine stochastic volatility and Lévy jumps," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 842-890, July.
    17. Chi Hung Yuen & Wendong Zheng & Yue Kuen Kwok, 2015. "Pricing Exotic Discrete Variance Swaps under the 3/2-Stochastic Volatility Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(5), pages 421-449, November.
    18. Lian, Guanghua & Chiarella, Carl & Kalev, Petko S., 2014. "Volatility swaps and volatility options on discretely sampled realized variance," Journal of Economic Dynamics and Control, Elsevier, vol. 47(C), pages 239-262.
    19. Alziary Chassat, Bénédicte & Takac, Peter, 2017. "On the Heston Model with Stochastic Volatility: Analytic Solutions and Complete Markets," TSE Working Papers 17-796, Toulouse School of Economics (TSE).
    20. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.18210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.