IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.18210.html
   My bibliography  Save this paper

American options valuation in time-dependent jump-diffusion models via integral equations and characteristic functions

Author

Listed:
  • Andrey Itkin

Abstract

Despite significant advancements in machine learning for derivative pricing, the efficient and accurate valuation of American options remains a persistent challenge due to complex exercise boundaries, near-expiry behavior, and intricate contractual features. This paper extends a semi-analytical approach for pricing American options in time-inhomogeneous models, including pure diffusions, jump-diffusions, and Levy processes. Building on prior work, we derive and solve Volterra integral equations of the second kind to determine the exercise boundary explicitly, offering a computationally superior alternative to traditional finite-difference and Monte Carlo methods. We address key open problems: (1) extending the decomposition method, i.e. splitting the American option price into its European counterpart and an early exercise premium, to general jump-diffusion and Levy models; (2) handling cases where closed-form transition densities are unavailable by leveraging characteristic functions via, e.g., the COS method; and (3) generalizing the framework to multidimensional diffusions. Numerical examples demonstrate the method's efficiency and robustness. Our results underscore the advantages of the integral equation approach for large-scale industrial applications, while resolving some limitations of existing techniques.

Suggested Citation

  • Andrey Itkin, 2025. "American options valuation in time-dependent jump-diffusion models via integral equations and characteristic functions," Papers 2506.18210, arXiv.org, revised Jun 2025.
  • Handle: RePEc:arx:papers:2506.18210
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.18210
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.18210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.