IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.07469.html
   My bibliography  Save this paper

Individual Treatment Effect: Prediction Intervals and Sharp Bounds

Author

Listed:
  • Zhehao Zhang
  • Thomas S. Richardson

Abstract

Individual treatment effect (ITE) is often regarded as the ideal target of inference in causal analyses and has been the focus of several recent studies. In this paper, we describe the intrinsic limits regarding what can be learned concerning ITEs given data from large randomized experiments. We consider when a valid prediction interval for the ITE is informative and when it can be bounded away from zero. The joint distribution over potential outcomes is only partially identified from a randomized trial. Consequently, to be valid, an ITE prediction interval must be valid for all joint distribution consistent with the observed data and hence will in general be wider than that resulting from knowledge of this joint distribution. We characterize prediction intervals in the binary treatment and outcome setting, and extend these insights to models with continuous and ordinal outcomes. We derive sharp bounds on the probability mass function (pmf) of the individual treatment effect (ITE). Finally, we contrast prediction intervals for the ITE and confidence intervals for the average treatment effect (ATE). This also leads to the consideration of Fisher versus Neyman null hypotheses. While confidence intervals for the ATE shrink with increasing sample size due to its status as a population parameter, prediction intervals for the ITE generally do not vanish, leading to scenarios where one may reject the Neyman null yet still find evidence consistent with the Fisher null, highlighting the challenges of individualized decision-making under partial identification.

Suggested Citation

  • Zhehao Zhang & Thomas S. Richardson, 2025. "Individual Treatment Effect: Prediction Intervals and Sharp Bounds," Papers 2506.07469, arXiv.org.
  • Handle: RePEc:arx:papers:2506.07469
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.07469
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mullahy, John, 2018. "Individual results may vary: Inequality-probability bounds for some health-outcome treatment effects," Journal of Health Economics, Elsevier, vol. 61(C), pages 151-162.
    2. Guilherme Duarte & Noam Finkelstein & Dean Knox & Jonathan Mummolo & Ilya Shpitser, 2024. "An Automated Approach to Causal Inference in Discrete Settings," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(547), pages 1778-1793, July.
    3. Lihua Lei & Emmanuel J. Candès, 2021. "Conformal inference of counterfactuals and individual treatment effects," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 911-938, November.
    4. Fan, Yanqin & Park, Sang Soo, 2010. "Sharp Bounds On The Distribution Of Treatment Effects And Their Statistical Inference," Econometric Theory, Cambridge University Press, vol. 26(3), pages 931-951, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neil Christy & Amanda Ellen Kowalski, 2024. "Counting Defiers in Health Care: A Design-Based Model of an Experiment Can Reveal Evidence Against Monotonicity," Papers 2412.16352, arXiv.org, revised Mar 2025.
    2. John Mullahy, 2020. "Discovering Treatment Effectiveness via Median Treatment Effects—Applications to COVID-19 Clinical Trials," NBER Working Papers 27895, National Bureau of Economic Research, Inc.
    3. Zhehao Zhang & Thomas S. Richardson, 2024. "Bounds on the Distribution of a Sum of Two Random Variables: Revisiting a problem of Kolmogorov with application to Individual Treatment Effects," Papers 2405.08806, arXiv.org, revised Mar 2025.
    4. Neil Christy & A. E. Kowalski, 2024. "Starting Small: Prioritizing Safety over Efficacy in Randomized Experiments Using the Exact Finite Sample Likelihood," Papers 2407.18206, arXiv.org.
    5. Marx, Philip, 2024. "Sharp bounds in the latent index selection model," Journal of Econometrics, Elsevier, vol. 238(2).
    6. Ismaël Mourifié & Marc Henry & Romuald Méango, 2020. "Sharp Bounds and Testability of a Roy Model of STEM Major Choices," Journal of Political Economy, University of Chicago Press, vol. 128(8), pages 3220-3283.
    7. Christian Bontemps & Thierry Magnac & Eric Maurin, 2012. "Set Identified Linear Models," Econometrica, Econometric Society, vol. 80(3), pages 1129-1155, May.
    8. Pablo Lavado & Gonzalo Rivera, 2016. "Identifying Treatment Effects with Data Combination and Unobserved Heterogeneity," Working Papers 79, Peruvian Economic Association.
    9. Jiannan Lu & Peng Ding & Tirthankar Dasgupta, 2018. "Treatment Effects on Ordinal Outcomes: Causal Estimands and Sharp Bounds," Journal of Educational and Behavioral Statistics, , vol. 43(5), pages 540-567, October.
    10. Timothy B. Armstrong & Shu Shen, 2013. "Inference on Optimal Treatment Assignments," Cowles Foundation Discussion Papers 1927RR, Cowles Foundation for Research in Economics, Yale University, revised Apr 2015.
    11. Halbert White & Karim Chalak, 2013. "Identification and Identification Failure for Treatment Effects Using Structural Systems," Econometric Reviews, Taylor & Francis Journals, vol. 32(3), pages 273-317, November.
    12. Molinari, Francesca, 2020. "Microeconometrics with partial identification," Handbook of Econometrics, in: Steven N. Durlauf & Lars Peter Hansen & James J. Heckman & Rosa L. Matzkin (ed.), Handbook of Econometrics, edition 1, volume 7, chapter 0, pages 355-486, Elsevier.
    13. Mourifié, Ismael, 2015. "Sharp bounds on treatment effects in a binary triangular system," Journal of Econometrics, Elsevier, vol. 187(1), pages 74-81.
    14. Ayers, Megan & Sanford, Luke & Gardner, Will & Kuebbing, Sara, 2025. "Causal Carbon: Baselines and Additionality with Potential Outcomes," OSF Preprints 5pcuh_v1, Center for Open Science.
    15. Pereda-Fernández, Santiago, 2023. "Identification and estimation of triangular models with a binary treatment," Journal of Econometrics, Elsevier, vol. 234(2), pages 585-623.
    16. Pablo Lavado & Gonzalo Rivera, 2015. "Identifying treatment effects and counterfactual distributions using data combination with unobserved heterogeneity," Working Papers 15-14, Centro de Investigación, Universidad del Pacífico.
    17. Lihua Lei, 2024. "Causal Interpretation of Regressions With Ranks," Papers 2406.05548, arXiv.org.
    18. Semenova, Vira, 2023. "Debiased machine learning of set-identified linear models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1725-1746.
    19. Sungwon Lee, 2024. "Partial identification and inference for conditional distributions of treatment effects," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 107-127, January.
    20. Buhl-Wiggers, Julie & Kerwin, Jason T. & Muñoz-Morales, Juan & Smith, Jeffrey & Thornton, Rebecca, 2024. "Some children left behind: Variation in the effects of an educational intervention," Journal of Econometrics, Elsevier, vol. 243(1).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.07469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.