IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.07462.html
   My bibliography  Save this paper

Does Residuals-on-Residuals Regression Produce Representative Estimates of Causal Effects?

Author

Listed:
  • Apoorva Lal
  • Winston Chou

Abstract

Double Machine Learning is commonly used to estimate causal effects in large observational datasets. The "residuals-on-residuals" regression estimator (RORR) is especially popular for its simplicity and computational tractability. However, when treatment effects are heterogeneous, the proper interpretation of RORR may not be well understood. We show that, for many-valued treatments with continuous dose-response functions, RORR converges to a conditional variance-weighted average of derivatives evaluated at points not in the observed dataset, which generally differs from the Average Causal Derivative (ACD). Hence, even if all units share the same dose-response function, RORR does not in general converge to an average treatment effect in the population represented by the sample. We propose an alternative estimator suitable for large datasets. We demonstrate the pitfalls of RORR and the favorable properties of the proposed estimator in both an illustrative numerical example and an application to real-world data from Netflix.

Suggested Citation

  • Apoorva Lal & Winston Chou, 2025. "Does Residuals-on-Residuals Regression Produce Representative Estimates of Causal Effects?," Papers 2506.07462, arXiv.org.
  • Handle: RePEc:arx:papers:2506.07462
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.07462
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Apoorva Lal, 2024. "Does Regression Produce Representative Causal Rankings?," Papers 2411.02675, arXiv.org.
    2. Cattaneo, Matias D., 2010. "Efficient semiparametric estimation of multi-valued treatment effects under ignorability," Journal of Econometrics, Elsevier, vol. 155(2), pages 138-154, April.
    3. Anna Baiardi & Andrea A. Naghi, 2024. "The effect of plough agriculture on gender roles: A machine learning approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(7), pages 1396-1402, November.
    4. Xinyu Wei & Mingwang Cheng & Kaifeng Duan & Xiangxing Kong, 2024. "Effects of Big Data on PM 2.5 : A Study Based on Double Machine Learning," Land, MDPI, vol. 13(3), pages 1-21, March.
    5. Edward H. Kennedy & Zongming Ma & Matthew D. McHugh & Dylan S. Small, 2017. "Non-parametric methods for doubly robust estimation of continuous treatment effects," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1229-1245, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Huang & Oliver Linton & Zheng Zhang, 2022. "A Unified Framework for Specification Tests of Continuous Treatment Effect Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1817-1830, October.
    2. Rahul Singh & Liyuan Xu & Arthur Gretton, 2020. "Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves," Papers 2010.04855, arXiv.org, revised Oct 2022.
    3. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    4. Ai, Chunrong & Linton, Oliver & Zhang, Zheng, 2022. "Estimation and inference for the counterfactual distribution and quantile functions in continuous treatment models," Journal of Econometrics, Elsevier, vol. 228(1), pages 39-61.
    5. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    6. Lee, Seong-ho & Ma, Yanyuan & de Luna, Xavier, 2025. "Covariate balancing for causal inference on categorical and continuous treatments," Econometrics and Statistics, Elsevier, vol. 33(C), pages 304-329.
    7. Su, Liangjun & Ura, Takuya & Zhang, Yichong, 2019. "Non-separable models with high-dimensional data," Journal of Econometrics, Elsevier, vol. 212(2), pages 646-677.
    8. Chen, Xiaohong & Liu, Ying & Ma, Shujie & Zhang, Zheng, 2024. "Causal inference of general treatment effects using neural networks with a diverging number of confounders," Journal of Econometrics, Elsevier, vol. 238(1).
    9. Michael Zimmert & Michael Lechner, 2019. "Nonparametric estimation of causal heterogeneity under high-dimensional confounding," Papers 1908.08779, arXiv.org.
    10. Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2020. "Deep Learning for Individual Heterogeneity," Papers 2010.14694, arXiv.org, revised Apr 2025.
    11. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    13. Stojčić, Nebojša, 2021. "Social and private outcomes of green innovation incentives in European advancing economies," Technovation, Elsevier, vol. 104(C).
    14. Manda, Julius & Feleke, Shiferaw & Mutungi, Christopher & Tufa, Adane H. & Mateete, Bekunda & Abdoulaye, Tahirou & Alene, Arega D., 2024. "Assessing the speed of improved postharvest technology adoption in Tanzania: The role of social learning and agricultural extension services," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
    15. Ay, Jean-Sauveur & Le Gallo, Julie, 2021. "The Signaling Values of Nested Wine Names," Working Papers 321851, American Association of Wine Economists.
    16. Katie Meara & Francesco Pastore & Allan Webster, 2020. "The gender pay gap in the USA: a matching study," Journal of Population Economics, Springer;European Society for Population Economics, vol. 33(1), pages 271-305, January.
    17. Michael Situ & Ute I. Schwarz & Guangyong Zou & Eric McArthur & Richard B. Kim & Amit X. Garg & Sisira Sarma, 2024. "Does prescribing apixaban or rivaroxaban versus warfarin for patients diagnosed with atrial fibrillation save health system costs? A multivalued treatment effects analysis," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 25(3), pages 397-409, April.
    18. Shaibu Baanni Azumah & Abraham Zakaria & Rosaine N. Yegbemey & Philips A. Apalogta & Vishal Dagar & Abass Mahama, 2022. "Climate Smart Production, Gross Income, and Downstream Risk Characterization of Rice Farmers in Ghana," Journal of Agricultural Studies, Macrothink Institute, vol. 10(2), pages 13-35, June.
    19. Hong, Yan-Zhen & Chang, Hung-Hao & Dai, Yong-Wu, 2018. "Is deregulation of forest land use rights transactions associated with economic well-being and labor allocation of farm households? Empirical evidence in China," Land Use Policy, Elsevier, vol. 75(C), pages 694-701.
    20. Oyenubi, Adeola & Kollamparambil, Umakrishnan, 2023. "Does noncompliance with COVID-19 regulations impact the depressive symptoms of others?," Economic Modelling, Elsevier, vol. 120(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.07462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.