Author
Listed:
- Junzhe Jiang
- Chang Yang
- Xinrun Wang
- Bo Li
Abstract
Stock market indices serve as fundamental market measurement that quantify systematic market dynamics. However, accurate index price prediction remains challenging, primarily because existing approaches treat indices as isolated time series and frame the prediction as a simple regression task. These methods fail to capture indices' inherent nature as aggregations of constituent stocks with complex, time-varying interdependencies. To address these limitations, we propose Cubic, a novel end-to-end framework that explicitly models the adaptive fusion of constituent stocks for index price prediction. Our main contributions are threefold. i) Fusion in the latent space: we introduce the fusion mechanism over the latent embedding of the stocks to extract the information from the vast number of stocks. ii) Binary encoding classification: since regression tasks are challenging due to continuous value estimation, we reformulate the regression into the classification task, where the target value is converted to binary and we optimize the prediction of the value of each digit with cross-entropy loss. iii) Confidence-guided prediction and trading: we introduce the regularization loss to address market prediction uncertainty for the index prediction and design the rule-based trading policies based on the confidence. Extensive experiments across multiple stock markets and indices demonstrate that Cubic consistently outperforms state-of-the-art baselines in stock index prediction tasks, achieving superior performance on both forecasting accuracy metrics and downstream trading profitability.
Suggested Citation
Junzhe Jiang & Chang Yang & Xinrun Wang & Bo Li, 2025.
"Why Regression? Binary Encoding Classification Brings Confidence to Stock Market Index Price Prediction,"
Papers
2506.03153, arXiv.org.
Handle:
RePEc:arx:papers:2506.03153
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.03153. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.