IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.01423.html
   My bibliography  Save this paper

FinRobot: Generative Business Process AI Agents for Enterprise Resource Planning in Finance

Author

Listed:
  • Hongyang Yang
  • Likun Lin
  • Yang She
  • Xinyu Liao
  • Jiaoyang Wang
  • Runjia Zhang
  • Yuquan Mo
  • Christina Dan Wang

Abstract

Enterprise Resource Planning (ERP) systems serve as the digital backbone of modern financial institutions, yet they continue to rely on static, rule-based workflows that limit adaptability, scalability, and intelligence. As business operations grow more complex and data-rich, conventional ERP platforms struggle to integrate structured and unstructured data in real time and to accommodate dynamic, cross-functional workflows. In this paper, we present the first AI-native, agent-based framework for ERP systems, introducing a novel architecture of Generative Business Process AI Agents (GBPAs) that bring autonomy, reasoning, and dynamic optimization to enterprise workflows. The proposed system integrates generative AI with business process modeling and multi-agent orchestration, enabling end-to-end automation of complex tasks such as budget planning, financial reporting, and wire transfer processing. Unlike traditional workflow engines, GBPAs interpret user intent, synthesize workflows in real time, and coordinate specialized sub-agents for modular task execution. We validate the framework through case studies in bank wire transfers and employee reimbursements, two representative financial workflows with distinct complexity and data modalities. Results show that GBPAs achieve up to 40% reduction in processing time, 94% drop in error rate, and improved regulatory compliance by enabling parallelism, risk control insertion, and semantic reasoning. These findings highlight the potential of GBPAs to bridge the gap between generative AI capabilities and enterprise-grade automation, laying the groundwork for the next generation of intelligent ERP systems.

Suggested Citation

  • Hongyang Yang & Likun Lin & Yang She & Xinyu Liao & Jiaoyang Wang & Runjia Zhang & Yuquan Mo & Christina Dan Wang, 2025. "FinRobot: Generative Business Process AI Agents for Enterprise Resource Planning in Finance," Papers 2506.01423, arXiv.org.
  • Handle: RePEc:arx:papers:2506.01423
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.01423
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wil M. P. Aalst & Martin Bichler & Armin Heinzl, 2018. "Robotic Process Automation," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 60(4), pages 269-272, August.
    2. Shijie Wu & Ozan Irsoy & Steven Lu & Vadim Dabravolski & Mark Dredze & Sebastian Gehrmann & Prabhanjan Kambadur & David Rosenberg & Gideon Mann, 2023. "BloombergGPT: A Large Language Model for Finance," Papers 2303.17564, arXiv.org, revised Dec 2023.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ching-Nam Hang & Pei-Duo Yu & Roberto Morabito & Chee-Wei Tan, 2024. "Large Language Models Meet Next-Generation Networking Technologies: A Review," Future Internet, MDPI, vol. 16(10), pages 1-29, October.
    2. Xia Li & Hanghang Zheng & Xiao Chen & Hong Liu & Mao Mao, 2025. "Class-Imbalanced-Aware Adaptive Dataset Distillation for Scalable Pretrained Model on Credit Scoring," Papers 2501.10677, arXiv.org, revised Jan 2025.
    3. Lezhi Li & Ting-Yu Chang & Hai Wang, 2023. "Multimodal Gen-AI for Fundamental Investment Research," Papers 2401.06164, arXiv.org.
    4. Thanos Konstantinidis & Giorgos Iacovides & Mingxue Xu & Tony G. Constantinides & Danilo Mandic, 2024. "FinLlama: Financial Sentiment Classification for Algorithmic Trading Applications," Papers 2403.12285, arXiv.org.
    5. Meyer, Julian Anton, 2025. "Success factors and development areas for the implementation of Generative AI in companies," Junior Management Science (JUMS), Junior Management Science e. V., vol. 10(1), pages 1-23.
    6. Frank Xing, 2024. "Designing Heterogeneous LLM Agents for Financial Sentiment Analysis," Papers 2401.05799, arXiv.org.
    7. Brougham, David & Haar, Jarrod, 2020. "Technological disruption and employment: The influence on job insecurity and turnover intentions: A multi-country study," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    8. Ankur Sinha & Chaitanya Agarwal & Pekka Malo, 2025. "FinBloom: Knowledge Grounding Large Language Model with Real-time Financial Data," Papers 2502.18471, arXiv.org.
    9. Hoyoung Lee & Youngsoo Choi & Yuhee Kwon, 2024. "Quantifying Qualitative Insights: Leveraging LLMs to Market Predict," Papers 2411.08404, arXiv.org.
    10. Balwant Singh Mehta & Ishwar Awasthi & Nidhi Mehta, 2021. "Women’s Employment and Digital Technology: A Regional Analysis in India," Indian Journal of Human Development, , vol. 15(3), pages 427-442, December.
    11. Seppälä, Timo & Mucha, Tomasz & Mattila, Juri, 2023. "Beyond AI, Blockchain Systems, and Digital Platforms: Digitalization Unlocks Mass Hyper-Personalization and Mass Servitization," ETLA Working Papers 106, The Research Institute of the Finnish Economy.
    12. Federico A. Lievano-Martínez & Javier D. Fernández-Ledesma & Daniel Burgos & John W. Branch-Bedoya & Jovani A. Jimenez-Builes, 2022. "Intelligent Process Automation: An Application in Manufacturing Industry," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    13. Zhaofeng Zhang & Banghao Chen & Shengxin Zhu & Nicolas Langren'e, 2024. "Quantformer: from attention to profit with a quantitative transformer trading strategy," Papers 2404.00424, arXiv.org, revised Oct 2024.
    14. Shengkun Wang & Taoran Ji & Linhan Wang & Yanshen Sun & Shang-Ching Liu & Amit Kumar & Chang-Tien Lu, 2024. "StockTime: A Time Series Specialized Large Language Model Architecture for Stock Price Prediction," Papers 2409.08281, arXiv.org.
    15. Zhang, Liang & Chen, Zhelun, 2025. "Opportunities of applying Large Language Models in building energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
    16. Issa Sugiura & Takashi Ishida & Taro Makino & Chieko Tazuke & Takanori Nakagawa & Kosuke Nakago & David Ha, 2025. "EDINET-Bench: Evaluating LLMs on Complex Financial Tasks using Japanese Financial Statements," Papers 2506.08762, arXiv.org.
    17. Tianyu Zhou & Pinqiao Wang & Yilin Wu & Hongyang Yang, 2024. "FinRobot: AI Agent for Equity Research and Valuation with Large Language Models," Papers 2411.08804, arXiv.org.
    18. Natalia Shmatko & Galina Volkova, 2020. "Bridging the Skill Gap in Robotics: Global and National Environment," SAGE Open, , vol. 10(3), pages 21582440209, September.
    19. Katarzyna Jasińska, 2021. "The Digital Chasm between an Idea and Its Implementation in Industry 4.0—The Case Study of a Polish Service Company," Sustainability, MDPI, vol. 13(16), pages 1-31, August.
    20. Wagner, Dirk Nicolas, 2020. "The nature of the Artificially Intelligent Firm - An economic investigation into changes that AI brings to the firm," Telecommunications Policy, Elsevier, vol. 44(6).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.01423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.