IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.09276.html
   My bibliography  Save this paper

On the rate of convergence of estimating the Hurst parameter of rough stochastic volatility models

Author

Listed:
  • Xiyue Han
  • Alexander Schied

Abstract

In [8], easily computable scale-invariant estimator $\widehat{\mathscr{R}}^s_n$ was constructed to estimate the Hurst parameter of the drifted fractional Brownian motion $X$ from its antiderivative. This paper extends this convergence result by proving that $\widehat{\mathscr{R}}^s_n$ also consistently estimates the Hurst parameter when applied to the antiderivative of $g \circ X$ for a general nonlinear function $g$. We also establish an almost sure rate of convergence in this general setting. Our result applies, in particular, to the estimation of the Hurst parameter of a wide class of rough stochastic volatility models from discrete observations of the integrated variance, including the fractional stochastic volatility model.

Suggested Citation

  • Xiyue Han & Alexander Schied, 2025. "On the rate of convergence of estimating the Hurst parameter of rough stochastic volatility models," Papers 2504.09276, arXiv.org.
  • Handle: RePEc:arx:papers:2504.09276
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.09276
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bolko, Anine E. & Christensen, Kim & Pakkanen, Mikko S. & Veliyev, Bezirgen, 2023. "A GMM approach to estimate the roughness of stochastic volatility," Journal of Econometrics, Elsevier, vol. 235(2), pages 745-778.
    2. Masaaki Fukasawa & Tetsuya Takabatake & Rebecca Westphal, 2022. "Consistent estimation for fractional stochastic volatility model under high‐frequency asymptotics," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 1086-1132, October.
    3. Rama Cont & Purba Das, 2024. "Rough Volatility: Fact or Artefact?," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(1), pages 191-223, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Florian Aichinger & Sascha Desmettre, 2025. "Pricing of geometric Asian options in the Volterra-Heston model," Review of Derivatives Research, Springer, vol. 28(1), pages 1-30, April.
    2. Shi, Shuping & Yu, Jun & Zhang, Chen, 2024. "On the spectral density of fractional Ornstein–Uhlenbeck processes," Journal of Econometrics, Elsevier, vol. 245(1).
    3. Xiaohu Wang & Weilin Xiao & Jun Yu & Chen Zhang, 2025. "Maximum Likelihood Estimation of Fractional Ornstein-Uhlenbeck Process with Discretely Sampled Data," Working Papers 202527, University of Macau, Faculty of Business Administration.
    4. Markus Bibinger & Jun Yu & Chen Zhang, 2025. "Modeling and Forecasting Realized Volatility with Multivariate Fractional Brownian Motion," Papers 2504.15985, arXiv.org.
    5. Rama Cont & Purba Das, 2024. "Rough Volatility: Fact or Artefact?," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(1), pages 191-223, May.
    6. Zhu, Qinwen & Diao, Xundi & Wu, Chongfeng, 2023. "Volatility forecast with the regularity modifications," Finance Research Letters, Elsevier, vol. 58(PA).
    7. Kim Christensen & Ulrich Hounyo & Zhi Liu, 2024. "A nonparametric test for diurnal variation in spot correlation processes," Papers 2408.02757, arXiv.org.
    8. Ranieri Dugo & Giacomo Giorgio & Paolo Pigato, 2024. "The Multivariate Fractional Ornstein-Uhlenbeck Process," CEIS Research Paper 581, Tor Vergata University, CEIS, revised 28 Aug 2024.
    9. Ofelia Bonesini & Antoine Jacquier & Alexandre Pannier, 2023. "Rough volatility, path-dependent PDEs and weak rates of convergence," Papers 2304.03042, arXiv.org, revised Jan 2025.
    10. Huy N. Chau & Duy Nguyen & Thai Nguyen, 2024. "On short-time behavior of implied volatility in a market model with indexes," Papers 2402.16509, arXiv.org, revised Mar 2025.
    11. Ranieri Dugo & Giacomo Giorgio & Paolo Pigato, 2024. "Multivariate Rough Volatility," CEIS Research Paper 589, Tor Vergata University, CEIS, revised 20 Dec 2024.
    12. Mikkel Bennedsen & Kim Christensen & Peter Christensen, 2024. "Composite likelihood estimation of stationary Gaussian processes with a view toward stochastic volatility," Papers 2403.12653, arXiv.org.
    13. Alexandre Pannier, 2023. "Path-dependent PDEs for volatility derivatives," Papers 2311.08289, arXiv.org, revised Jan 2024.
    14. Saad Mouti, 2023. "Rough volatility: evidence from range volatility estimators," Papers 2312.01426, arXiv.org, revised Sep 2024.
    15. Angelini, Daniele & Bianchi, Sergio, 2023. "Nonlinear biases in the roughness of a Fractional Stochastic Regularity Model," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    16. Shuping Shi & Jun Yu, 2023. "Volatility Puzzle: Long Memory or Antipersistency," Management Science, INFORMS, vol. 69(7), pages 3861-3883, July.
    17. Li, Yicun & Teng, Yuanyang, 2023. "Statistical inference in discretely observed fractional Ornstein–Uhlenbeck processes," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    18. Peter Christensen, 2024. "Roughness Signature Functions," Papers 2401.02819, arXiv.org.
    19. Xiyue Han & Alexander Schied, 2023. "Estimating the roughness exponent of stochastic volatility from discrete observations of the integrated variance," Papers 2307.02582, arXiv.org, revised Nov 2024.
    20. Carsten Chong & Marc Hoffmann & Yanghui Liu & Mathieu Rosenbaum & Gr'egoire Szymanski, 2022. "Statistical inference for rough volatility: Central limit theorems," Papers 2210.01216, arXiv.org, revised Jun 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.09276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.