IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2407.14573.html
   My bibliography  Save this paper

Trading Devil Final: Backdoor attack via Stock market and Bayesian Optimization

Author

Listed:
  • Orson Mengara

Abstract

Since the advent of generative artificial intelligence, every company and researcher has been rushing to develop their own generative models, whether commercial or not. Given the large number of users of these powerful new tools, there is currently no intrinsically verifiable way to explain from the ground up what happens when LLMs (large language models) learn. For example, those based on automatic speech recognition systems, which have to rely on huge and astronomical amounts of data collected from all over the web to produce fast and efficient results, In this article, we develop a backdoor attack called MarketBackFinal 2.0, based on acoustic data poisoning, MarketBackFinal 2.0 is mainly based on modern stock market models. In order to show the possible vulnerabilities of speech-based transformers that may rely on LLMs.

Suggested Citation

  • Orson Mengara, 2024. "Trading Devil Final: Backdoor attack via Stock market and Bayesian Optimization," Papers 2407.14573, arXiv.org, revised Apr 2025.
  • Handle: RePEc:arx:papers:2407.14573
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2407.14573
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rama Cont & Purba Das, 2024. "Rough Volatility: Fact or Artefact?," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(1), pages 191-223, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Florian Aichinger & Sascha Desmettre, 2025. "Pricing of geometric Asian options in the Volterra-Heston model," Review of Derivatives Research, Springer, vol. 28(1), pages 1-30, April.
    2. Takaishi, Tetsuya, 2025. "Multifractality and sample size influence on Bitcoin volatility patterns," Finance Research Letters, Elsevier, vol. 74(C).
    3. Ulrich Horst & Wei Xu & Rouyi Zhang, 2024. "Path-dependent Fractional Volterra Equations and the Microstructure of Rough Volatility Models driven by Poisson Random Measures," Papers 2412.16436, arXiv.org.
    4. Xiyue Han & Alexander Schied, 2025. "On the rate of convergence of estimating the Hurst parameter of rough stochastic volatility models," Papers 2504.09276, arXiv.org.
    5. Tim Leung & Theodore Zhao, 2024. "A Noisy Fractional Brownian Motion Model for Multiscale Correlation Analysis of High-Frequency Prices," Mathematics, MDPI, vol. 12(6), pages 1-21, March.
    6. Daniele Angelini & Matthieu Garcin, 2024. "Market information of the fractional stochastic regularity model," Papers 2409.07159, arXiv.org, revised May 2025.
    7. Carsten H. Chong & Viktor Todorov, 2024. "A nonparametric test for rough volatility," Papers 2407.10659, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2407.14573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.