IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.24324.html
   My bibliography  Save this paper

Predicting and Mitigating Agricultural Price Volatility Using Climate Scenarios and Risk Models

Author

Listed:
  • Sourish Das
  • Sudeep Shukla
  • Abbinav Sankar Kailasam
  • Anish Rai
  • Anirban Chakraborti

Abstract

Agricultural price volatility challenges sustainable finance, planning, and policy, driven by market dynamics and meteorological factors such as temperature and precipitation. In India, the Minimum Support Price (MSP) system acts as implicit crop insurance, shielding farmers from price drops without premium payments. We analyze the impact of climate on price volatility for soybean (Madhya Pradesh), rice (Assam), and cotton (Gujarat). Using ERA5-Land reanalysis data from the Copernicus Climate Change Service, we analyze historical climate patterns and evaluate two scenarios: SSP2.4.5 (moderate case) and SSP5.8.5 (severe case). Our findings show that weather conditions strongly influence price fluctuations and that integrating meteorological data into volatility models enhances risk-hedging. Using the Exponential Generalized Autoregressive Conditional Heteroskedasticity (EGARCH) model, we estimate conditional price volatility and identify cross-correlations between weather and price volatility movements. Recognizing MSP's equivalence to a European put option, we apply the Black-Scholes model to estimate its implicit premium, quantifying its fiscal cost. We propose this novel market-based risk-hedging mechanism wherein the government purchases insurance equivalent to MSP, leveraging Black-Scholes for accurate premium estimation. Our results underscore the importance of meteorological data in agricultural risk modeling, supporting targeted insurance and strengthening resilience in agricultural finance. This climate-informed financial framework enhances risk-sharing, stabilizes prices, and informs sustainable agricultural policy under growing climate uncertainty.

Suggested Citation

  • Sourish Das & Sudeep Shukla & Abbinav Sankar Kailasam & Anish Rai & Anirban Chakraborti, 2025. "Predicting and Mitigating Agricultural Price Volatility Using Climate Scenarios and Risk Models," Papers 2503.24324, arXiv.org.
  • Handle: RePEc:arx:papers:2503.24324
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.24324
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. K.S. Aditya & S.P. Subash & K.V. Praveen & M.L. Nithyashree & N. Bhuvana & Akriti Sharma, 2017. "Awareness about Minimum Support Price and Its Impact on Diversification Decision of Farmers in India," Asia and the Pacific Policy Studies, Wiley Blackwell, vol. 4(3), pages 514-526, September.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    4. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    5. Birthal, P.S. & Khan, T.M. & Negi, D.S. & Agarwal, S., 2014. "Impact of Climate Change on Yields of Major Food Crops in India: Implications for Food Security," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 27(2).
    6. Ashok Kumar & Abbinav Sankar Kailasam & Anish Rai & Sudeep Shukla & Sourish Das & Anirban Chakraborti, 2025. "The Impact of Meteorological Factors on Crop Price Volatility in India: Case studies of Soybean and Brinjal," Papers 2503.11690, arXiv.org, revised Mar 2025.
    7. Anirban Chakraborti & Hrishidev & Kiran Sharma & Hirdesh K. Pharasi, 2019. "Phase separation and scaling in correlation structures of financial markets," Papers 1910.06242, arXiv.org, revised Jul 2020.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 540-582, Fall.
    2. Menn, Christian & Rachev, Svetlozar T., 2005. "A GARCH option pricing model with [alpha]-stable innovations," European Journal of Operational Research, Elsevier, vol. 163(1), pages 201-209, May.
    3. He, Xue-Zhong & Li, Youwei, 2015. "Testing of a market fraction model and power-law behaviour in the DAX 30," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 1-17.
    4. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    5. Lars Stentoft, 2008. "Option Pricing using Realized Volatility," CREATES Research Papers 2008-13, Department of Economics and Business Economics, Aarhus University.
    6. Robert F. Engle & Emil N. Siriwardane, 2018. "Structural GARCH: The Volatility-Leverage Connection," The Review of Financial Studies, Society for Financial Studies, vol. 31(2), pages 449-492.
    7. Duan, Jin-Chuan & Simonato, Jean-Guy, 2001. "American option pricing under GARCH by a Markov chain approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 25(11), pages 1689-1718, November.
    8. F. Fornari & A. Mele, 1998. "ARCH Models and Option Pricing : The Continuous Time Connection," THEMA Working Papers 98-30, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    9. Rachid Belhachemi, 2024. "Option Valuation with Conditional Heteroskedastic Hidden Truncation Models," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2585-2601, June.
    10. Jeroen Klomp, 2025. "The impact of the Hamas-Israel conflict on the U.S. defense industry stock market return," PLOS ONE, Public Library of Science, vol. 20(2), pages 1-21, February.
    11. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    12. Vyacheslav Abramov & Fima Klebaner, 2007. "Estimation and Prediction of a Non-Constant Volatility," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 14(1), pages 1-23, March.
    13. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    14. Boero, G. & Torricelli, C., 1996. "A comparative evaluation of alternative models of the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 93(1), pages 205-223, August.
    15. Koo, Bonsoo & Linton, Oliver, 2012. "Estimation of semiparametric locally stationary diffusion models," Journal of Econometrics, Elsevier, vol. 170(1), pages 210-233.
    16. Dicle, Mehmet F. & Levendis, John, 2020. "Historic risk and implied volatility," Global Finance Journal, Elsevier, vol. 45(C).
    17. Jianlei Han & Martina Linnenluecke & Zhangxin Liu & Zheyao Pan & Tom Smith, 2019. "A general equilibrium approach to pricing volatility risk," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-18, April.
    18. N. S. Gonchar, 2020. "Derivatives Pricing in Non-Arbitrage Market," Papers 2010.13630, arXiv.org.
    19. Schäfer, Rudi & Guhr, Thomas, 2010. "Local normalization: Uncovering correlations in non-stationary financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3856-3865.
    20. Petra Posedel Šimović & Azra Tafro, 2021. "Pricing the Volatility Risk Premium with a Discrete Stochastic Volatility Model," Mathematics, MDPI, vol. 9(17), pages 1-15, August.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.24324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.