IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.04873.html
   My bibliography  Save this paper

Are Large Language Models Good In-context Learners for Financial Sentiment Analysis?

Author

Listed:
  • Xinyu Wei
  • Luojia Liu

Abstract

Recently, large language models (LLMs) with hundreds of billions of parameters have demonstrated the emergent ability, surpassing traditional methods in various domains even without fine-tuning over domain-specific data. However, when it comes to financial sentiment analysis (FSA)$\unicode{x2013}$a fundamental task in financial AI$\unicode{x2013}$these models often encounter various challenges, such as complex financial terminology, subjective human emotions, and ambiguous inclination expressions. In this paper, we aim to answer the fundamental question: whether LLMs are good in-context learners for FSA? Unveiling this question can yield informative insights on whether LLMs can learn to address the challenges by generalizing in-context demonstrations of financial document-sentiment pairs to the sentiment analysis of new documents, given that finetuning these models on finance-specific data is difficult, if not impossible at all. To the best of our knowledge, this is the first paper exploring in-context learning for FSA that covers most modern LLMs (recently released DeepSeek V3 included) and multiple in-context sample selection methods. Comprehensive experiments validate the in-context learning capability of LLMs for FSA.

Suggested Citation

  • Xinyu Wei & Luojia Liu, 2025. "Are Large Language Models Good In-context Learners for Financial Sentiment Analysis?," Papers 2503.04873, arXiv.org.
  • Handle: RePEc:arx:papers:2503.04873
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.04873
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.04873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.