IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.04072.html
   My bibliography  Save this paper

Wasserstein Robust Market Making via Entropy Regularization

Author

Listed:
  • Zhou Fang
  • Arie Israel

Abstract

In this paper, we introduce a robust market making framework based on Wasserstein distance, utilizing a stochastic policy approach enhanced by entropy regularization. We demonstrate that, under mild assumptions, the robust market making problem can be reformulated as a convex optimization question. Additionally, we outline a methodology for selecting the optimal radius of the Wasserstein ball, further refining our framework's effectiveness.

Suggested Citation

  • Zhou Fang & Arie Israel, 2025. "Wasserstein Robust Market Making via Entropy Regularization," Papers 2503.04072, arXiv.org.
  • Handle: RePEc:arx:papers:2503.04072
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.04072
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marco Avellaneda & Sasha Stoikov, 2008. "High-frequency trading in a limit order book," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 217-224.
    2. Ho, Thomas & Stoll, Hans R., 1981. "Optimal dealer pricing under transactions and return uncertainty," Journal of Financial Economics, Elsevier, vol. 9(1), pages 47-73, March.
    3. Jose Blanchet & Karthyek Murthy & Nian Si, 2022. "Confidence regions in Wasserstein distributionally robust estimation [Distributionally robust groupwise regularization estimator]," Biometrika, Biometrika Trust, vol. 109(2), pages 295-315.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Campi, Luciano & Zabaljauregui, Diego, 2020. "Optimal market making under partial information with general intensities," LSE Research Online Documents on Economics 104612, London School of Economics and Political Science, LSE Library.
    2. Marina Di Giacinto & Claudio Tebaldi & Tai-Ho Wang, 2021. "Optimal order execution under price impact: A hybrid model," Papers 2112.02228, arXiv.org, revised Aug 2022.
    3. Thomas Spooner & Rahul Savani, 2020. "Robust Market Making via Adversarial Reinforcement Learning," Papers 2003.01820, arXiv.org, revised Jul 2020.
    4. Christoph Kuhn & Johannes Muhle-Karbe, 2013. "Optimal Liquidity Provision," Papers 1309.5235, arXiv.org, revised Feb 2015.
    5. Sofiene El Aoud & Frédéric Abergel, 2015. "A stochastic control approach for options market making," Post-Print hal-01061852, HAL.
    6. Philippe Bergault & Olivier Guéant, 2021. "Size matters for OTC market makers: General results and dimensionality reduction techniques," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 279-322, January.
    7. N Baradel & B Bouchard & Ngoc Minh Dang, 2016. "Optimal trading with online parameters revisions," Working Papers hal-01304019, HAL.
    8. Philippe Bergault & Louis Bertucci & David Bouba & Olivier Guéant, 2024. "Automated market makers: mean-variance analysis of LPs payoffs and design of pricing functions," Digital Finance, Springer, vol. 6(2), pages 225-247, June.
    9. Hong Guo & Jianwu Lin & Fanlin Huang, 2023. "Market Making with Deep Reinforcement Learning from Limit Order Books," Papers 2305.15821, arXiv.org.
    10. Luitgard Veraart, 2010. "Optimal Market Making in the Foreign Exchange Market," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(4), pages 359-372.
    11. Philippe Bergault & David Evangelista & Olivier Gu'eant & Douglas Vieira, 2018. "Closed-form approximations in multi-asset market making," Papers 1810.04383, arXiv.org, revised Sep 2022.
    12. Bastien Baldacci & Joffrey Derchu & Iuliia Manziuk, 2020. "An approximate solution for options market-making in high dimension," Papers 2009.00907, arXiv.org.
    13. Philippe Bergault & Louis Bertucci & David Bouba & Olivier Gu'eant & Julien Guilbert, 2024. "Automated Market Making: the case of Pegged Assets," Papers 2411.08145, arXiv.org.
    14. Qing-Qing Yang & Wai-Ki Ching & Jiawen Gu & Tak-Kuen Siu, 2020. "Trading strategy with stochastic volatility in a limit order book market," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 277-301, June.
    15. Marina Giacinto & Claudio Tebaldi & Tai-Ho Wang, 2024. "Optimal order execution under price impact: a hybrid model," Annals of Operations Research, Springer, vol. 336(1), pages 605-636, May.
    16. Bastien Baldacci & Jerome Benveniste & Gordon Ritter, 2020. "Optimal trading without optimal control," Papers 2012.12945, arXiv.org.
    17. Aït-Sahalia, Yacine & Sağlam, Mehmet, 2024. "High frequency market making: The role of speed," Journal of Econometrics, Elsevier, vol. 239(2).
    18. Fei Xie & Yang Liu & Changlong Hu & Shenbao Liang, 2025. "Dynamic Modeling of Limit Order Book and Market Maker Strategy Optimization Based on Markov Queue Theory," Mathematics, MDPI, vol. 13(5), pages 1-27, February.
    19. Alejandro Garc'ia Figal & Alejandro Lage Castellanos & Roberto Mulet, 2025. "Looking into informal currency markets as Limit Order Books: impact of market makers," Papers 2503.03858, arXiv.org.
    20. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.04072. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.