IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.00650.html
   My bibliography  Save this paper

The Hidden Cost of Waiting for Accurate Predictions

Author

Listed:
  • Ali Shirali
  • Ariel Procaccia
  • Rediet Abebe

Abstract

Algorithmic predictions are increasingly informing societal resource allocations by identifying individuals for targeting. Policymakers often build these systems with the assumption that by gathering more observations on individuals, they can improve predictive accuracy and, consequently, allocation efficiency. An overlooked yet consequential aspect of prediction-driven allocations is that of timing. The planner has to trade off relying on earlier and potentially noisier predictions to intervene before individuals experience undesirable outcomes, or they may wait to gather more observations to make more precise allocations. We examine this tension using a simple mathematical model, where the planner collects observations on individuals to improve predictions over time. We analyze both the ranking induced by these predictions and optimal resource allocation. We show that though individual prediction accuracy improves over time, counter-intuitively, the average ranking loss can worsen. As a result, the planner's ability to improve social welfare can decline. We identify inequality as a driving factor behind this phenomenon. Our findings provide a nuanced perspective and challenge the conventional wisdom that it is preferable to wait for more accurate predictions to ensure the most efficient allocations.

Suggested Citation

  • Ali Shirali & Ariel Procaccia & Rediet Abebe, 2025. "The Hidden Cost of Waiting for Accurate Predictions," Papers 2503.00650, arXiv.org.
  • Handle: RePEc:arx:papers:2503.00650
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.00650
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jon Kleinberg & Jens Ludwig & Sendhil Mullainathan & Ziad Obermeyer, 2015. "Prediction Policy Problems," American Economic Review, American Economic Association, vol. 105(5), pages 491-495, May.
    2. Toru Kitagawa & Aleksey Tetenov, 2018. "Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice," Econometrica, Econometric Society, vol. 86(2), pages 591-616, March.
    3. Jens Ludwig & Greg J. Duncan & Lisa A. Gennetian & Lawrence F. Katz & Ronald C. Kessler & Jeffrey R. Kling & Lisa Sanbonmatsu, 2013. "Long-Term Neighborhood Effects on Low-Income Families: Evidence from Moving to Opportunity," American Economic Review, American Economic Association, vol. 103(3), pages 226-231, May.
    4. Bhattacharya, Debopam & Dupas, Pascaline, 2012. "Inferring welfare maximizing treatment assignment under budget constraints," Journal of Econometrics, Elsevier, vol. 167(1), pages 168-196.
    5. Carri W. Chan & Vivek F. Farias & Nicholas Bambos & Gabriel J. Escobar, 2012. "Optimizing Intensive Care Unit Discharge Decisions with Patient Readmissions," Operations Research, INFORMS, vol. 60(6), pages 1323-1341, December.
    6. Raj Chetty & Nathaniel Hendren & Lawrence F. Katz, 2016. "The Effects of Exposure to Better Neighborhoods on Children: New Evidence from the Moving to Opportunity Experiment," American Economic Review, American Economic Association, vol. 106(4), pages 855-902, April.
    7. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    8. Katz, Lawrence & Duncan, Greg J. & Kling, Jeffrey R. & Kessler, Ronald C. & Ludwig, Jens & Sanbonmatsu, Lisa & Liebman, Jeffrey B., 2008. "What Can We Learn about Neighborhood Effects from the Moving to Opportunity Experiment?," Scholarly Articles 2766959, Harvard University Department of Economics.
    9. Juan C. Perdomo & Tolani Britton & Moritz Hardt & Rediet Abebe, 2023. "Difficult Lessons on Social Prediction from Wisconsin Public Schools," Papers 2304.06205, arXiv.org, revised Sep 2023.
    10. Emily Aiken & Suzanne Bellue & Dean Karlan & Chris Udry & Joshua E. Blumenstock, 2022. "Machine learning and phone data can improve targeting of humanitarian aid," Nature, Nature, vol. 603(7903), pages 864-870, March.
    11. Ellora Derenoncourt, 2022. "Can You Move to Opportunity? Evidence from the Great Migration," American Economic Review, American Economic Association, vol. 112(2), pages 369-408, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Carlos Perdomo, 2023. "The Relative Value of Prediction in Algorithmic Decision Making," Papers 2312.08511, arXiv.org, revised May 2024.
    2. Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2023. "Towards data-driven project design: Providing optimal treatment rules for development projects," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    3. Ali Shirali & Rediet Abebe & Moritz Hardt, 2024. "Allocation Requires Prediction Only if Inequality Is Low," Papers 2406.13882, arXiv.org.
    4. Undral Byambadalai, 2022. "Identification and Inference for Welfare Gains without Unconfoundedness," Papers 2207.04314, arXiv.org.
    5. Toru Kitagawa & Hugo Lopez & Jeff Rowley, 2022. "Stochastic Treatment Choice with Empirical Welfare Updating," Papers 2211.01537, arXiv.org, revised Feb 2023.
    6. Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023. "Treatment recommendation with distributional targets," Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
    7. Douglas Almond & Janet Currie & Valentina Duque, 2018. "Childhood Circumstances and Adult Outcomes: Act II," Journal of Economic Literature, American Economic Association, vol. 56(4), pages 1360-1446, December.
    8. Shosei Sakaguchi, 2021. "Estimation of Optimal Dynamic Treatment Assignment Rules under Policy Constraints," Papers 2106.05031, arXiv.org, revised Aug 2024.
    9. Tobias Cagala & Ulrich Glogowsky & Johannes Rincke & Anthony Strittmatter, 2021. "Optimal Targeting in Fundraising: A Machine-Learning Approach," Economics working papers 2021-08, Department of Economics, Johannes Kepler University Linz, Austria.
    10. Raj Chetty & Nathaniel Hendren, 2018. "The Impacts of Neighborhoods on Intergenerational Mobility I: Childhood Exposure Effects," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(3), pages 1107-1162.
    11. Toru Kitagawa & Weining Wang & Mengshan Xu, 2022. "Policy Choice in Time Series by Empirical Welfare Maximization," Papers 2205.03970, arXiv.org, revised Dec 2024.
    12. Chaliasos, Michael & Jansson, Thomas & Karabulut, Yigitcan, 2025. "Wealth inequality: Opportunity for me or for others?," IMFS Working Paper Series 216, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
    13. Yu-Chang Chen & Haitian Xie, 2022. "Personalized Subsidy Rules," Papers 2202.13545, arXiv.org, revised Mar 2022.
    14. Johannes Haushofer & Paul Niehaus & Carlos Paramo & Edward Miguel & Michael W. Walker, 2022. "Targeting Impact versus Deprivation," NBER Working Papers 30138, National Bureau of Economic Research, Inc.
    15. Toru Kitagawa & Weining Wang & Mengshan Xu, 2024. "Policy choice in time series by empirical welfare maximization," CeMMAP working papers 27/24, Institute for Fiscal Studies.
    16. Yuya Sasaki & Takuya Ura, 2020. "Welfare Analysis via Marginal Treatment Effects," Papers 2012.07624, arXiv.org.
    17. Timothy B. Armstrong & Shu Shen, 2023. "Inference on optimal treatment assignments," The Japanese Economic Review, Springer, vol. 74(4), pages 471-500, October.
    18. Battiston, Pietro & Gamba, Simona & Santoro, Alessandro, 2024. "Machine learning and the optimization of prediction-based policies," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    19. Achim Ahrens & Alessandra Stampi‐Bombelli & Selina Kurer & Dominik Hangartner, 2024. "Optimal multi‐action treatment allocation: A two‐phase field experiment to boost immigrant naturalization," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(7), pages 1379-1395, November.
    20. Liyang Sun, 2021. "Empirical Welfare Maximization with Constraints," Papers 2103.15298, arXiv.org, revised Sep 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.00650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.