IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.18625.html
   My bibliography  Save this paper

To Make, or to Take, That Is the Question: Impact of LOB Mechanics on Natural Trading Strategies

Author

Listed:
  • Jakob Albers
  • Mihai Cucuringu
  • Sam Howison
  • Alexander Y. Shestopaloff

Abstract

Working at a very granular level, using data from a live trading experiment on the Binance linear Bitcoin perpetual-the most liquid crypto market worldwide-we examine the effects of (i) basic order book mechanics and (ii) the strong persistence of price changes from the immediate to the short timescale, revealing the interplay between returns, queue sizes, and orders' queue positions. For maker orders, we find a negative correlation between fill likelihood and subsequent short-term returns, posing a significant challenge for maker order-based strategies, while the main hurdle with taker orders is overcoming the taker fee. These dynamics render natural (and commonly-cited) trading strategies highly unprofitable. Finally, we use the understanding gained to identify situations (Reversals) in which a successful trading strategy can operate; we construct a signal for Reversals and demonstrate its efficacy.

Suggested Citation

  • Jakob Albers & Mihai Cucuringu & Sam Howison & Alexander Y. Shestopaloff, 2025. "To Make, or to Take, That Is the Question: Impact of LOB Mechanics on Natural Trading Strategies," Papers 2502.18625, arXiv.org.
  • Handle: RePEc:arx:papers:2502.18625
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.18625
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Timothy DeLise, 2024. "The Negative Drift of a Limit Order Fill," Papers 2407.16527, arXiv.org.
    2. Alexander Lipton & Umberto Pesavento & Michael G Sotiropoulos, 2013. "Trade arrival dynamics and quote imbalance in a limit order book," Papers 1312.0514, arXiv.org.
    3. Álvaro Cartea & Ryan Donnelly & Sebastian Jaimungal, 2018. "Enhancing trading strategies with order book signals," Applied Mathematical Finance, Taylor & Francis Journals, vol. 25(1), pages 1-35, January.
    4. Felix Lokin & Fenghui Yu, 2024. "Fill Probabilities in a Limit Order Book with State-Dependent Stochastic Order Flows," Papers 2403.02572, arXiv.org.
    5. Yacine Aït-Sahalia & Jianqing Fan & Lirong Xue & Yifeng Zhou, 2022. "How and When are High-Frequency Stock Returns Predictable?," NBER Working Papers 30366, National Bureau of Economic Research, Inc.
    6. Álvaro Cartea & Leandro Sánchez-Betancourt, 2023. "Optimal execution with stochastic delay," Finance and Stochastics, Springer, vol. 27(1), pages 1-47, January.
    7. Martin D. Gould & Julius Bonart, 2015. "Queue Imbalance as a One-Tick-Ahead Price Predictor in a Limit Order Book," Papers 1512.03492, arXiv.org.
    8. Ã Lvaro Cartea & Sebastian Jaimungal & Leandro Sã Nchez-Betancourt, 2021. "Latency And Liquidity Risk," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 24(06n07), pages 1-37, September.
    9. Rama Cont & Mihai Cucuringu & Chao Zhang, 2023. "Cross-impact of order flow imbalance in equity markets," Quantitative Finance, Taylor & Francis Journals, vol. 23(10), pages 1373-1393, October.
    10. Rama Cont & Mihai Cucuringu & Chao Zhang, 2021. "Cross-Impact of Order Flow Imbalance in Equity Markets," Papers 2112.13213, arXiv.org, revised Jun 2023.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuan Tao & Andrew Day & Lan Ling & Samuel Drapeau, 2020. "On Detecting Spoofing Strategies in High Frequency Trading," Papers 2009.14818, arXiv.org, revised Dec 2020.
    2. Abdul Rahman & Neelesh Upadhye, 2024. "Hybrid Vector Auto Regression and Neural Network Model for Order Flow Imbalance Prediction in High Frequency Trading," Papers 2411.08382, arXiv.org.
    3. Antonio Briola & Silvia Bartolucci & Tomaso Aste, 2024. "HLOB -- Information Persistence and Structure in Limit Order Books," Papers 2405.18938, arXiv.org, revised Jun 2024.
    4. Daniel Cunha Oliveira & Yutong Lu & Xi Lin & Mihai Cucuringu & Andre Fujita, 2024. "Causality-Inspired Models for Financial Time Series Forecasting," Papers 2408.09960, arXiv.org.
    5. Li, Zhicheng & Chen, Xinyun & Xing, Haipeng, 2023. "A multifactor regime-switching model for inter-trade durations in the high-frequency limit order market," Economic Modelling, Elsevier, vol. 118(C).
    6. Luca Lalor & Anatoliy Swishchuk, 2024. "Reinforcement Learning in Non-Markov Market-Making," Papers 2410.14504, arXiv.org, revised Nov 2024.
    7. Zhicheng Li & Haipeng Xing & Xinyun Chen, 2019. "A multifactor regime-switching model for inter-trade durations in the limit order market," Papers 1912.00764, arXiv.org.
    8. Peter B. Lerner, 2022. "Fourier Integral Operator Model of Market Liquidity: The Chinese Experience 2009–2010," Mathematics, MDPI, vol. 10(14), pages 1-25, July.
    9. Luca Lalor & Anatoliy Swishchuk, 2025. "Event-Based Limit Order Book Simulation under a Neural Hawkes Process: Application in Market-Making," Papers 2502.17417, arXiv.org.
    10. Briola, Antonio & Bartolucci, Silvia & Aste, Tomaso, 2025. "HLOB–Information persistence and structure in limit order books," LSE Research Online Documents on Economics 126623, London School of Economics and Political Science, LSE Library.
    11. Eduardo Abi Jaber & Eyal Neuman & Sturmius Tuschmann, 2024. "Optimal Portfolio Choice with Cross-Impact Propagators," Papers 2403.10273, arXiv.org.
    12. Panayi, Efstathios & Peters, Gareth W. & Danielsson, Jon & Zigrand, Jean-Pierre, 2018. "Designating market maker behaviour in limit order book markets," Econometrics and Statistics, Elsevier, vol. 5(C), pages 20-44.
    13. Ioane Muni Toke & Nakahiro Yoshida, 2020. "Marked point processes and intensity ratios for limit order book modeling," Papers 2001.08442, arXiv.org.
    14. Philippe Bergault & Olivier Gu'eant, 2023. "Liquidity Dynamics in RFQ Markets and Impact on Pricing," Papers 2309.04216, arXiv.org, revised Jun 2024.
    15. Antonio Briola & Silvia Bartolucci & Tomaso Aste, 2024. "Deep Limit Order Book Forecasting," Papers 2403.09267, arXiv.org, revised Jun 2024.
    16. Deborah Miori & Mihai Cucuringu, 2022. "SEC Form 13F-HR: Statistical investigation of trading imbalances and profitability analysis," Papers 2209.08825, arXiv.org.
    17. Zijian Shi & John Cartlidge, 2024. "Neural stochastic agent‐based limit order book simulation with neural point process and diffusion probabilistic model," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
    18. Yan Dolinsky, 2023. "Delayed Semi-static Hedging in the Continuous Time Bachelier Model," Papers 2311.17270, arXiv.org, revised Sep 2024.
    19. Bastien Baldacci & Joffrey Derchu & Iuliia Manziuk, 2020. "An approximate solution for options market-making in high dimension," Papers 2009.00907, arXiv.org.
    20. Luca Lalor & Anatoliy Swishchuk, 2024. "Market Simulation under Adverse Selection," Papers 2409.12721, arXiv.org, revised Mar 2025.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.18625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.