IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2501.04646.html
   My bibliography  Save this paper

A mixture transition distribution approach to portfolio optimization

Author

Listed:
  • Riccardo De Blasis
  • Luca Galati
  • Filippo Petroni

Abstract

Understanding the dependencies among financial assets is critical for portfolio optimization. Traditional approaches based on correlation networks often fail to capture the nonlinear and directional relationships that exist in financial markets. In this study, we construct directed and weighted financial networks using the Mixture Transition Distribution (MTD) model, offering a richer representation of asset interdependencies. We apply local assortativity measures--metrics that evaluate how assets connect based on similarities or differences--to guide portfolio selection and allocation. Using data from the Dow Jones 30, Euro Stoxx 50, and FTSE 100 indices constituents, we show that portfolios optimized with network-based assortativity measures consistently outperform the classical mean-variance framework. Notably, modalities in which assets with differing characteristics connect enhance diversification and improve Sharpe ratios. The directed nature of MTD-based networks effectively captures complex relationships, yielding portfolios with superior risk-adjusted returns. Our findings highlight the utility of network-based methodologies in financial decision-making, demonstrating their ability to refine portfolio optimization strategies. This work thus underscores the potential of leveraging advanced financial networks to achieve enhanced performance, offering valuable insights for practitioners and setting a foundation for future research.

Suggested Citation

  • Riccardo De Blasis & Luca Galati & Filippo Petroni, 2025. "A mixture transition distribution approach to portfolio optimization," Papers 2501.04646, arXiv.org, revised Jan 2025.
  • Handle: RePEc:arx:papers:2501.04646
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2501.04646
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    2. Lu Yang & Lei Yang & Xue Cui, 2023. "Sovereign default network and currency risk premia," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-22, December.
    3. Ricca, Federica & Scozzari, Andrea, 2024. "Portfolio optimization through a network approach: Network assortative mixing and portfolio diversification," European Journal of Operational Research, Elsevier, vol. 312(2), pages 700-717.
    4. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    5. Tse, Chi K. & Liu, Jing & Lau, Francis C.M., 2010. "A network perspective of the stock market," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 659-667, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D’Amico, Guglielmo & De Blasis, Riccardo & Petroni, Filippo, 2023. "The Mixture Transition Distribution approach to networks: Evidence from stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    2. Peralta, Gustavo & Zareei, Abalfazl, 2016. "A network approach to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 157-180.
    3. Výrost, Tomáš & Lyócsa, Štefan & Baumöhl, Eduard, 2015. "Granger causality stock market networks: Temporal proximity and preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 262-276.
    4. Gustavo Peralta, 2015. "Network-based Measures as Leading Indicators of Market Instability: The case of the Spanish Stock," CNMV Working Papers CNMV Working Papers no 59, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
    5. Výrost, Tomas & Lyócsa, Štefan & Baumöhl, Eduard, 2019. "Network-based asset allocation strategies," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 516-536.
    6. Shi, Huai-Long & Chen, Huayi, 2024. "Understanding co-movements based on heterogeneous information associations," International Review of Financial Analysis, Elsevier, vol. 94(C).
    7. Huang, Wei-Qiang & Zhuang, Xin-Tian & Yao, Shuang & Uryasev, Stan, 2016. "A financial network perspective of financial institutions’ systemic risk contributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 183-196.
    8. Yong Tang & Jason Jie Xiong & Zi-Yang Jia & Yi-Cheng Zhang, 2018. "Complexities in Financial Network Topological Dynamics: Modeling of Emerging and Developed Stock Markets," Complexity, Hindawi, vol. 2018, pages 1-31, November.
    9. Jean-Baptiste Hasse, 2022. "Systemic risk: a network approach," Empirical Economics, Springer, vol. 63(1), pages 313-344, July.
    10. Jean-Baptiste Hasse, 2020. "Systemic Risk: a Network Approach," Working Papers halshs-02893780, HAL.
    11. Chen, Yanhua & Li, Youwei & Pantelous, Athanasios A. & Stanley, H. Eugene, 2022. "Short-run disequilibrium adjustment and long-run equilibrium in the international stock markets: A network-based approach," International Review of Financial Analysis, Elsevier, vol. 79(C).
    12. Bu, Hui & Tang, Wenjin & Wu, Junjie, 2019. "Time-varying comovement and changes of comovement structure in the Chinese stock market: A causal network method," Economic Modelling, Elsevier, vol. 81(C), pages 181-204.
    13. Chun-Xiao Nie & Fu-Tie Song, 2021. "Entropy of Graphs in Financial Markets," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1149-1166, April.
    14. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    15. Brida, Juan Gabriel & Gómez, David Matesanz & Seijas, Maria Nela, 2017. "Debt and growth: A non-parametric approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 883-894.
    16. Papana, Angeliki & Kyrtsou, Catherine & Kugiumtzis, Dimitris & Diks, Cees, 2017. "Financial networks based on Granger causality: A case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 65-73.
    17. Chuangxia Huang & Xian Zhao & Renli Su & Xiaoguang Yang & Xin Yang, 2022. "Dynamic network topology and market performance: A case of the Chinese stock market," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1962-1978, April.
    18. Brida, Juan Gabriel & Matesanz, David & Seijas, Maria Nela, 2016. "Network analysis of returns and volume trading in stock markets: The Euro Stoxx case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 751-764.
    19. Shi, Huai-Long & Chen, Huayi, 2023. "Revisiting asset co-movement: Does network topology really matter?," Research in International Business and Finance, Elsevier, vol. 66(C).
    20. Laleh Tafakori & Armin Pourkhanali & Riccardo Rastelli, 2022. "Measuring systemic risk and contagion in the European financial network," Empirical Economics, Springer, vol. 63(1), pages 345-389, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2501.04646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.