IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2412.18080.html

Conditional Influence Functions

Author

Listed:
  • Victor Chernozhukov
  • Whitney K. Newey
  • Vasilis Syrgkanis

Abstract

There are many nonparametric objects of interest that are a function of a conditional distribution. One important example is an average treatment effect conditional on a subset of covariates. Many of these objects have a conditional influence function that generalizes the classical influence function of a functional of a (unconditional) distribution. Conditional influence functions have important uses analogous to those of the classical influence function. They can be used to construct Neyman orthogonal estimating equations for conditional objects of interest that depend on high dimensional regressions. They can be used to formulate local policy effects and describe the effect of local misspecification on conditional objects of interest. We derive conditional influence functions for functionals of conditional means and other features of the conditional distribution of an outcome variable. We show how these can be used for locally linear estimation of conditional objects of interest. We give rate conditions for first step machine learners to have no effect on asymptotic distributions of locally linear estimators. We also give a general construction of Neyman orthogonal estimating equations for conditional objects of interest.

Suggested Citation

  • Victor Chernozhukov & Whitney K. Newey & Vasilis Syrgkanis, 2024. "Conditional Influence Functions," Papers 2412.18080, arXiv.org.
  • Handle: RePEc:arx:papers:2412.18080
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2412.18080
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Isaiah Andrews & Matthew Gentzkow & Jesse M. Shapiro, 2017. "Measuring the Sensitivity of Parameter Estimates to Estimation Moments," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(4), pages 1553-1592.
    2. Guido W. Imbens & Whitney K. Newey, 2009. "Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity," Econometrica, Econometric Society, vol. 77(5), pages 1481-1512, September.
    3. Victor Chernozhukov & Whitney K. Newey & Victor Quintas-Martinez & Vasilis Syrgkanis, 2021. "Automatic Debiased Machine Learning via Riesz Regression," Papers 2104.14737, arXiv.org, revised Mar 2024.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrei Zeleneev & Kirill Evdokimov, 2023. "Simple estimation of semiparametric models with measurement errors," CeMMAP working papers 10/23, Institute for Fiscal Studies.
    2. Kirill S. Evdokimov & Andrei Zeleneev, 2023. "Simple Estimation of Semiparametric Models with Measurement Errors," Papers 2306.14311, arXiv.org, revised Nov 2025.
    3. Guido W. Imbens, 2020. "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," Journal of Economic Literature, American Economic Association, vol. 58(4), pages 1129-1179, December.
    4. Steven T. Berry & Philip A. Haile, 2021. "Foundations of Demand Estimation," NBER Working Papers 29305, National Bureau of Economic Research, Inc.
    5. Ma, Lingjie & Koenker, Roger, 2006. "Quantile regression methods for recursive structural equation models," Journal of Econometrics, Elsevier, vol. 134(2), pages 471-506, October.
    6. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Kato, Kengo & F. Galvao, Antonio & Montes-Rojas, Gabriel V., 2012. "Asymptotics for panel quantile regression models with individual effects," Journal of Econometrics, Elsevier, vol. 170(1), pages 76-91.
    8. Chernozhukov, Victor & Fernández-Val, Iván & Hoderlein, Stefan & Holzmann, Hajo & Newey, Whitney, 2015. "Nonparametric identification in panels using quantiles," Journal of Econometrics, Elsevier, vol. 188(2), pages 378-392.
    9. Steven N. Durlauf & Yannis M. Ioannides, 2010. "Social Interactions," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 451-478, September.
    10. Hoderlein, Stefan & White, Halbert, 2012. "Nonparametric identification in nonseparable panel data models with generalized fixed effects," Journal of Econometrics, Elsevier, vol. 168(2), pages 300-314.
    11. repec:hum:wpaper:sfb649dp2012-042 is not listed on IDEAS
    12. Vittorio Bassi & Raffaela Muoio & Tommaso Porzio & Ritwika Sen & Esau Tugume, 2022. "Achieving Scale Collectively," Econometrica, Econometric Society, vol. 90(6), pages 2937-2978, November.
    13. Greg Lewis & Bora Ozaltun & Georgios Zervas, 2021. "Maximum Likelihood Estimation of Differentiated Products Demand Systems," Papers 2111.12397, arXiv.org.
    14. Bodory, Hugo & Huber, Martin, 2018. "The causalweight package for causal inference in R," FSES Working Papers 493, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    15. Hoderlein, Stefan & Holzmann, Hajo & Meister, Alexander, 2017. "The triangular model with random coefficients," Journal of Econometrics, Elsevier, vol. 201(1), pages 144-169.
    16. Juan Carlos Escanciano & Telmo P'erez-Izquierdo, 2023. "Automatic Debiased Estimation with Machine Learning-Generated Regressors," Papers 2301.10643, arXiv.org, revised May 2025.
    17. Nir Billfeld & Moshe Kim, 2024. "Context-dependent Causality (the Non-Nonotonic Case)," Papers 2404.05021, arXiv.org.
    18. Kim Kyoo il & Petrin Amil, 2022. "A Generalized Non-Parametric Instrumental Variable-Control Function Approach to Estimation in Nonlinear Settings," Journal of Econometric Methods, De Gruyter, vol. 11(1), pages 91-125, January.
    19. Timothy B. Armstrong & Michal Kolesár, 2021. "Sensitivity analysis using approximate moment condition models," Quantitative Economics, Econometric Society, vol. 12(1), pages 77-108, January.
    20. Victor Chernozhukov & Iván Fernández-Val & Blaise Melly & Kaspar Wüthrich, 2020. "Generic Inference on Quantile and Quantile Effect Functions for Discrete Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 123-137, January.
    21. Steffen Andersen & Cristian Badarinza & Lu Liu & Julie Marx & Tarun Ramadorai, 2022. "Reference Dependence in the Housing Market," American Economic Review, American Economic Association, vol. 112(10), pages 3398-3440, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.18080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.