IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.08246.html
   My bibliography  Save this paper

New approaches of the DCC-GARCH residual: Application to foreign exchange rates

Author

Listed:
  • Kenichiro Shiraya
  • Kanji Suzuki
  • Tomohisa Yamakami

Abstract

Two formulations are proposed to filter out correlations in the residuals of the multivariate GARCH model. The first approach is to estimate the correlation matrix as a parameter and transform any joint distribution to have an arbitrary correlation matrix. The second approach transforms time series data into an uncorrelated residual based on the eigenvalue decomposition of a correlation matrix. The empirical performance of these methods is examined through a prediction task for foreign exchange rates and compared with other methodologies in terms of the out-of-sample likelihood. By using these approaches, the DCC-GARCH residual can be almost independent.

Suggested Citation

  • Kenichiro Shiraya & Kanji Suzuki & Tomohisa Yamakami, 2024. "New approaches of the DCC-GARCH residual: Application to foreign exchange rates," Papers 2411.08246, arXiv.org.
  • Handle: RePEc:arx:papers:2411.08246
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.08246
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Tae-Hwy & Long, Xiangdong, 2009. "Copula-based multivariate GARCH model with uncorrelated dependent errors," Journal of Econometrics, Elsevier, vol. 150(2), pages 207-218, June.
    2. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    3. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    4. Ramchand, Latha & Susmel, Raul, 1998. "Volatility and cross correlation across major stock markets," Journal of Empirical Finance, Elsevier, vol. 5(4), pages 397-416, October.
    5. Aloui, Riadh & Ben Aïssa, Mohamed Safouane, 2016. "Relationship between oil, stock prices and exchange rates: A vine copula based GARCH method," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 458-471.
    6. Mathias Drehmann & Bafundi Maronoti & Angela O'Connor, 2023. "Global tightening, banking stress and market resilience in EMEs," BIS Papers, Bank for International Settlements, number 134.
    7. Kim, Jong-Min & Jung, Hojin, 2016. "Linear time-varying regression with Copula–DCC–GARCH models for volatility," Economics Letters, Elsevier, vol. 145(C), pages 262-265.
    8. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Oliveira, Felipe A. & Maia, Sinézio F. & de Jesus, Diego P. & Besarria, Cássio da N., 2018. "Which information matters to market risk spreading in Brazil? Volatility transmission modelling using MGARCH-BEKK, DCC, t-Copulas," The North American Journal of Economics and Finance, Elsevier, vol. 45(C), pages 83-100.
    2. Vincenzo Candila, 2021. "Multivariate Analysis of Cryptocurrencies," Econometrics, MDPI, vol. 9(3), pages 1-17, July.
    3. Zolotko, Mikhail & Okhrin, Ostap, 2014. "Modelling the general dependence between commodity forward curves," Energy Economics, Elsevier, vol. 43(C), pages 284-296.
    4. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    5. Tejeda, Hernan A. & Goodwin, Barry K. & Pelletier, Denis, 2009. "A State Dependent Regime Switching Model of Dynamic Correlations," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49370, Agricultural and Applied Economics Association.
    6. Felipe de Oliveira & Sinézio Fernandes Maia & Diego Pita de Jesus, 2017. "Which information matters to Market risk spreading in Brazil? Volatility transmission modeling using MGARH-BEKK, DCC, t-COPULAS," EcoMod2017 10378, EcoMod.
    7. repec:wyi:journl:002141 is not listed on IDEAS
    8. Nadine McCloud & Yongmiao Hong, 2011. "Testing The Structure Of Conditional Correlations In Multivariate Garch Models: A Generalized Cross‐Spectrum Approach," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(4), pages 991-1037, November.
    9. Guochang Wang & Wai Keung Li & Ke Zhu, 2018. "New HSIC-based tests for independence between two stationary multivariate time series," Papers 1804.09866, arXiv.org.
    10. Abu S. Amin & Lucjan T. Orlowski, 2014. "Returns, Volatilities, and Correlations Across Mature, Regional, and Frontier Markets: Evidence from South Asia," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 50(3), pages 5-27, May.
    11. Asai, Manabu & McAleer, Michael, 2015. "Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance," Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
    12. Sucarrat, Genaro & Grønneberg, Steffen & Escribano, Alvaro, 2016. "Estimation and inference in univariate and multivariate log-GARCH-X models when the conditional density is unknown," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 582-594.
    13. Roxana Chiriac & Valeri Voev, 2011. "Modelling and forecasting multivariate realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 922-947, September.
    14. Vincenzo Candila, 2013. "A Comparison of the Forecasting Performances of Multivariate Volatility Models," Working Papers 3_228, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
    15. Manabu Asai & Michael McAleer, 2009. "Dynamic Conditional Correlations for Asymmetric Processes," CARF F-Series CARF-F-168, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    16. Massimiliano Caporin & Michael McAleer, 2011. "Thresholds, news impact surfaces and dynamic asymmetric multivariate GARCH," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(2), pages 125-163, May.
    17. Caporin, Massimiliano & McAleer, Michael, 2014. "Robust ranking of multivariate GARCH models by problem dimension," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 172-185.
    18. Kyritsis, Evangelos & Serletis, Apostolos, 2018. "The zero lower bound and market spillovers: Evidence from the G7 and Norway," Research in International Business and Finance, Elsevier, vol. 44(C), pages 100-123.
    19. Chulwoo Han & Frank C. Park & Jangkoo Kang, 2017. "A geometric treatment of time-varying volatilities," Review of Quantitative Finance and Accounting, Springer, vol. 49(4), pages 1121-1141, November.
    20. Hakim, Abdul & McAleer, Michael, 2009. "Forecasting conditional correlations in stock, bond and foreign exchange markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(9), pages 2830-2846.
    21. Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013. "On loss functions and ranking forecasting performances of multivariate volatility models," Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.08246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.