IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2404.06471.html
   My bibliography  Save this paper

Regression Discontinuity Design with Spillovers

Author

Listed:
  • Eric Auerbach
  • Yong Cai
  • Ahnaf Rafi

Abstract

This paper studies regression discontinuity designs (RDD) when linear-in-means spillovers occur between units that are close in their running variable. We show that the RDD estimand depends on the ratio of two terms: (1) the radius over which spillovers occur and (2) the choice of bandwidth used for the local linear regression. RDD estimates direct treatment effect when radius is of larger order than the bandwidth and total treatment effect when radius is of smaller order than the bandwidth. When the two are of similar order, the RDD estimand need not have a causal interpretation. To recover direct and spillover effects in the intermediate regime, we propose to incorporate estimated spillover terms into local linear regression. Our estimator is consistent and asymptotically normal and we provide bias-aware confidence intervals for direct treatment effects and spillovers. In the setting of Gonzalez (2021), we detect endogenous spillovers in voter fraud during the 2009 Afghan Presidential election. We also clarify when the donut-hole design addresses spillovers in RDD.

Suggested Citation

  • Eric Auerbach & Yong Cai & Ahnaf Rafi, 2024. "Regression Discontinuity Design with Spillovers," Papers 2404.06471, arXiv.org, revised Sep 2025.
  • Handle: RePEc:arx:papers:2404.06471
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2404.06471
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sobel, Michael E., 2006. "What Do Randomized Studies of Housing Mobility Demonstrate?: Causal Inference in the Face of Interference," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1398-1407, December.
    2. Yuchen Hu & Shuangning Li & Stefan Wager, 2022. "Average direct and indirect causal effects under interference [Estimating average causal effects under general interference, with application to a social network experiment]," Biometrika, Biometrika Trust, vol. 109(4), pages 1165-1172.
    3. Hudgens, Michael G. & Halloran, M. Elizabeth, 2008. "Toward Causal Inference With Interference," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 832-842, June.
    4. Yuchen Hu & Shuangning Li & Stefan Wager, 2021. "Average Direct and Indirect Causal Effects under Interference," Papers 2104.03802, arXiv.org, revised Jan 2022.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kirill Borusyak & Matan Kolerman-Shemer, 2024. "Regression discontinuity aggregation, with an application to the union effects on inequality," Papers 2501.00428, arXiv.org.
    2. Nicolas Debarsy & Julie Le Gallo, 2024. "Identification of spatial spillovers: Do’s and don'ts," Working Papers hal-04549691, HAL.
    3. Bermúdez-Barrezueta, Natalia & Desiere, Sam & Tarullo, Giulia, 2025. "Hiring Subsidies and Temporary Work Agencies," IZA Discussion Papers 17616, Institute of Labor Economics (IZA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Zhang & Kosuke Imai, 2023. "Individualized Policy Evaluation and Learning under Clustered Network Interference," Papers 2311.02467, arXiv.org, revised Mar 2025.
    2. Luofeng Liao & Christian Kroer, 2024. "Statistical Inference and A/B Testing in Fisher Markets and Paced Auctions," Papers 2406.15522, arXiv.org, revised Mar 2025.
    3. Luo, Shikai & Yang, Ying & Shi, Chengchun & Yao, Fang & Ye, Jieping & Zhu, Hongtu, 2024. "Policy evaluation for temporal and/or spatial dependent experiments," LSE Research Online Documents on Economics 122741, London School of Economics and Political Science, LSE Library.
    4. Cyrus Samii & Ye Wang & Jonathan Sullivan & P. M. Aronow, 2023. "Inference in Spatial Experiments with Interference using the SpatialEffect Package," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 138-156, March.
    5. Haoge Chang, 2023. "Design-based Estimation Theory for Complex Experiments," Papers 2311.06891, arXiv.org, revised May 2025.
    6. Sahil Loomba & Dean Eckles, 2025. "Policy relevance of causal quantities in networks," Papers 2507.14391, arXiv.org.
    7. Luofeng Liao & Christian Kroer, 2023. "Statistical Inference and A/B Testing for First-Price Pacing Equilibria," Papers 2301.02276, arXiv.org, revised Jun 2023.
    8. Tadao Hoshino & Takahide Yanagi, 2024. "Causal Inference with Noncompliance and Unknown Interference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(548), pages 2869-2880, October.
    9. Li, Ting & Shi, Chengchun & Lu, Zhaohua & Li, Yi & Zhu, Hongtu, 2024. "Evaluating dynamic conditional quantile treatment effects with applications in ridesharing," LSE Research Online Documents on Economics 122488, London School of Economics and Political Science, LSE Library.
    10. Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org, revised Apr 2025.
    11. Christopher Harshaw & Fredrik Savje & Yitan Wang, 2022. "A General Design-Based Framework and Estimator for Randomized Experiments," Papers 2210.08698, arXiv.org, revised Aug 2025.
    12. Tiziano Arduini & Eleonora Patacchini & Edoardo Rainone, 2020. "Treatment Effects With Heterogeneous Externalities," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(4), pages 826-838, October.
    13. Giovanni Cerulli, 2014. "ntreatreg: a Stata module for estimation of treatment effects in the presence of neighborhood interactions," United Kingdom Stata Users' Group Meetings 2014 15, Stata Users Group.
    14. Laura Forastiere & Patrizia Lattarulo & Marco Mariani & Fabrizia Mealli & Laura Razzolini, 2021. "Exploring Encouragement, Treatment, and Spillover Effects Using Principal Stratification, With Application to a Field Experiment on Teens’ Museum Attendance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 244-258, January.
    15. Brian J. Reich & Shu Yang & Yawen Guan & Andrew B. Giffin & Matthew J. Miller & Ana Rappold, 2021. "A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications," International Statistical Review, International Statistical Institute, vol. 89(3), pages 605-634, December.
    16. A. Giffin & B. J. Reich & S. Yang & A. G. Rappold, 2023. "Generalized propensity score approach to causal inference with spatial interference," Biometrics, The International Biometric Society, vol. 79(3), pages 2220-2231, September.
    17. Nicolas Debarsy & Julie Le Gallo, 2024. "Identification of spatial spillovers: Do’s and don'ts," Working Papers hal-04549691, HAL.
    18. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," SciencePo Working papers Main hal-03455978, HAL.
    19. Chiba, Yasutaka, 2012. "A note on bounds for the causal infectiousness effect in vaccine trials," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1422-1429.
    20. Máté Kormos & Robert P. Lieli & Martin Huber, 2025. "Interacting Treatments With Endogenous Takeup," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 40(4), pages 424-437, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2404.06471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.