IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2403.14862.html
   My bibliography  Save this paper

The Power of Linear Programming in Sponsored Listings Ranking: Evidence from Field Experiments

Author

Listed:
  • Haihao Lu
  • Luyang Zhang

Abstract

Sponsored listing is one of the major revenue sources for many prominent online marketplaces, such as Amazon, Walmart, and Alibaba. When consumers visit a marketplace's webpage for a specific item, in addition to that item, the marketplace might also display a ranked listing of sponsored items from various third-party sellers. These sellers are charged an advertisement fee if a user purchases any of the sponsored items from this listing. Determining how to rank these sponsored items for each incoming visit is a crucial challenge for online marketplaces, a problem known as sponsored listings ranking (SLR). The major difficulty of SLR lies in balancing the trade-off between maximizing the overall revenue and recommending high-quality and relevant ranked listings. While a more relevant ranking may result in more purchases and consumer engagement, the marketplace also needs to take account of the potential revenue when making ranking decisions. Due to the latency requirement and historical reasons, many online marketplaces use score-based ranking algorithms for SLR optimization. Alternatively, recent research also discusses obtaining the ranking by solving linear programming (LP). In this paper, we collaborate with a leading online global marketplace and conduct a series of field experiments to compare the performance of the score-based ranking algorithms and the LP-based algorithms. The field experiment lasted for $19$ days, which included $329.3$ million visits in total. We observed that the LP-based approach improved all major metrics by $1.80\%$ of revenue, $1.55\%$ of purchase, and $1.39\%$ of the gross merchandise value (GMV), compared to an extremely-tuned score-based algorithm that was previously used in production by the marketplace.

Suggested Citation

  • Haihao Lu & Luyang Zhang, 2024. "The Power of Linear Programming in Sponsored Listings Ranking: Evidence from Field Experiments," Papers 2403.14862, arXiv.org.
  • Handle: RePEc:arx:papers:2403.14862
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2403.14862
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2014. "Examining the Impact of Ranking on Consumer Behavior and Search Engine Revenue," Management Science, INFORMS, vol. 60(7), pages 1632-1654, July.
    2. Kris J. Ferreira & Sunanda Parthasarathy & Shreyas Sekar, 2022. "Learning to Rank an Assortment of Products," Management Science, INFORMS, vol. 68(3), pages 1828-1848, March.
    3. Felipe Caro & Jérémie Gallien, 2007. "Dynamic Assortment with Demand Learning for Seasonal Consumer Goods," Management Science, INFORMS, vol. 53(2), pages 276-292, February.
    4. Harvey M. Salkin & Cornelis A. De Kluyver, 1975. "The knapsack problem: A survey," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 22(1), pages 127-144, March.
    5. Mika Sumida & Guillermo Gallego & Paat Rusmevichientong & Huseyin Topaloglu & James Davis, 2021. "Revenue-Utility Tradeoff in Assortment Optimization Under the Multinomial Logit Model with Totally Unimodular Constraints," Management Science, INFORMS, vol. 67(5), pages 2845-2869, May.
    6. Pentico, David W., 2007. "Assignment problems: A golden anniversary survey," European Journal of Operational Research, Elsevier, vol. 176(2), pages 774-793, January.
    7. Guillermo Gallego & Richard Ratliff & Sergey Shebalov, 2015. "A General Attraction Model and Sales-Based Linear Program for Network Revenue Management Under Customer Choice," Operations Research, INFORMS, vol. 63(1), pages 212-232, February.
    8. Guillermo Gallego & Huseyin Topaloglu, 2019. "Revenue Management and Pricing Analytics," International Series in Operations Research and Management Science, Springer, number 978-1-4939-9606-3, December.
    9. Paat Rusmevichientong & Huseyin Topaloglu, 2012. "Robust Assortment Optimization in Revenue Management Under the Multinomial Logit Choice Model," Operations Research, INFORMS, vol. 60(4), pages 865-882, August.
    10. Guillermo Gallego & Anran Li & Van-Anh Truong & Xinshang Wang, 2020. "Approximation Algorithms for Product Framing and Pricing," Operations Research, INFORMS, vol. 68(1), pages 134-160, January.
    11. Kalyan Talluri & Garrett van Ryzin, 2004. "Revenue Management Under a General Discrete Choice Model of Consumer Behavior," Management Science, INFORMS, vol. 50(1), pages 15-33, January.
    12. Paat Rusmevichientong & Zuo-Jun Max Shen & David B. Shmoys, 2010. "Dynamic Assortment Optimization with a Multinomial Logit Choice Model and Capacity Constraint," Operations Research, INFORMS, vol. 58(6), pages 1666-1680, December.
    13. Zikun Ye & Dennis J. Zhang & Heng Zhang & Renyu Zhang & Xin Chen & Zhiwei Xu, 2023. "Cold Start to Improve Market Thickness on Online Advertising Platforms: Data-Driven Algorithms and Field Experiments," Management Science, INFORMS, vol. 69(7), pages 3838-3860, July.
    14. Nishimura, Kiyohiko G, 1989. "Customer Markets and Price Sensitivity," Economica, London School of Economics and Political Science, vol. 56(222), pages 187-198, May.
    15. Gediminas Adomavicius & YoungOk Kwon, 2014. "Optimization-Based Approaches for Maximizing Aggregate Recommendation Diversity," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 351-369, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Aouad & Danny Segev, 2021. "Display Optimization for Vertically Differentiated Locations Under Multinomial Logit Preferences," Management Science, INFORMS, vol. 67(6), pages 3519-3550, June.
    2. Santiago R. Balseiro & Antoine Désir, 2023. "Incentive-Compatible Assortment Optimization for Sponsored Products," Management Science, INFORMS, vol. 69(8), pages 4668-4684, August.
    3. Kameng Nip & Zhenbo Wang & Zizhuo Wang, 2021. "Assortment Optimization under a Single Transition Choice Model," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2122-2142, July.
    4. Nan Liu & Yuhang Ma & Huseyin Topaloglu, 2020. "Assortment Optimization Under the Multinomial Logit Model with Sequential Offerings," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 835-853, July.
    5. Qiu, Jiaqing & Li, Xiangyong & Duan, Yongrui & Chen, Mengxi & Tian, Peng, 2020. "Dynamic assortment in the presence of brand heterogeneity," Journal of Retailing and Consumer Services, Elsevier, vol. 56(C).
    6. Meng Qi & Ho‐Yin Mak & Zuo‐Jun Max Shen, 2020. "Data‐driven research in retail operations—A review," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(8), pages 595-616, December.
    7. Kris Johnson Ferreira & Joel Goh, 2021. "Assortment Rotation and the Value of Concealment," Management Science, INFORMS, vol. 67(3), pages 1489-1507, March.
    8. Guillermo Gallego & Gerardo Berbeglia, 2021. "Bounds, Heuristics, and Prophet Inequalities for Assortment Optimization," Papers 2109.14861, arXiv.org, revised Oct 2023.
    9. C. I. Chiang, 2023. "Availability control under online reviews in hospitality," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 22(5), pages 385-398, October.
    10. Strauss, Arne K. & Klein, Robert & Steinhardt, Claudius, 2018. "A review of choice-based revenue management: Theory and methods," European Journal of Operational Research, Elsevier, vol. 271(2), pages 375-387.
    11. Xi Chen & Chao Shi & Yining Wang & Yuan Zhou, 2021. "Dynamic Assortment Planning Under Nested Logit Models," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 85-102, January.
    12. Flores, Alvaro & Berbeglia, Gerardo & Van Hentenryck, Pascal, 2019. "Assortment optimization under the Sequential Multinomial Logit Model," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1052-1064.
    13. Aydın Alptekinoğlu & John H. Semple, 2016. "The Exponomial Choice Model: A New Alternative for Assortment and Price Optimization," Operations Research, INFORMS, vol. 64(1), pages 79-93, February.
    14. Felipe Caro & Victor Martínez-de-Albéniz & Paat Rusmevichientong, 2014. "The Assortment Packing Problem: Multiperiod Assortment Planning for Short-Lived Products," Management Science, INFORMS, vol. 60(11), pages 2701-2721, November.
    15. Antoine Désir & Vineet Goyal & Danny Segev & Chun Ye, 2020. "Constrained Assortment Optimization Under the Markov Chain–based Choice Model," Management Science, INFORMS, vol. 66(2), pages 698-721, February.
    16. Mika Sumida & Guillermo Gallego & Paat Rusmevichientong & Huseyin Topaloglu & James Davis, 2021. "Revenue-Utility Tradeoff in Assortment Optimization Under the Multinomial Logit Model with Totally Unimodular Constraints," Management Science, INFORMS, vol. 67(5), pages 2845-2869, May.
    17. Shipra Agrawal & Vashist Avadhanula & Vineet Goyal & Assaf Zeevi, 2019. "MNL-Bandit: A Dynamic Learning Approach to Assortment Selection," Operations Research, INFORMS, vol. 67(5), pages 1453-1485, September.
    18. Wang, Mengmeng & Zhang, Xun & Li, Xiaolong, 2023. "Multiple-purchase choice model: estimation and optimization," International Journal of Production Economics, Elsevier, vol. 265(C).
    19. Fleckenstein, David & Klein, Robert & Steinhardt, Claudius, 2023. "Recent advances in integrating demand management and vehicle routing: A methodological review," European Journal of Operational Research, Elsevier, vol. 306(2), pages 499-518.
    20. Ali Aouad & Vivek Farias & Retsef Levi, 2021. "Assortment Optimization Under Consider-Then-Choose Choice Models," Management Science, INFORMS, vol. 67(6), pages 3368-3386, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2403.14862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.