IDEAS home Printed from
   My bibliography  Save this paper

Imputation of Counterfactual Outcomes when the Errors are Predictable


  • Silvia Goncalves
  • Serena Ng


A crucial input into causal inference is the imputed counterfactual outcome. Imputation error can arise because of sampling uncertainty from estimating the prediction model using the untreated observations, or from out-of-sample information not captured by the model. While the literature has focused on sampling uncertainty, it vanishes with the sample size. Often overlooked is the possibility that the out-of-sample error can be informative about the missing counterfactual outcome if it is mutually or serially correlated. Motivated by the best linear unbiased predictor (\blup) of \citet{goldberger:62} in a time series setting, we propose an improved predictor of potential outcome when the errors are correlated. The proposed \pup\; is practical as it is not restricted to linear models, can be used with consistent estimators already developed, and improves mean-squared error for a large class of strong mixing error processes. Ignoring predictability in the errors can distort conditional inference. However, the precise impact will depend on the choice of estimator as well as the realized values of the residuals.

Suggested Citation

  • Silvia Goncalves & Serena Ng, 2024. "Imputation of Counterfactual Outcomes when the Errors are Predictable," Papers 2403.08130,, revised May 2024.
  • Handle: RePEc:arx:papers:2403.08130

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Kathleen T. Li, 2020. "Statistical Inference for Average Treatment Effects Estimated by Synthetic Control Methods," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 2068-2083, December.
    2. Victor Chernozhukov & Kaspar Wüthrich & Yinchu Zhu, 2021. "An Exact and Robust Conformal Inference Method for Counterfactual and Synthetic Controls," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1849-1864, October.
    3. Cheng Hsiao & H. Steve Ching & Shui Ki Wan, 2012. "A Panel Data Approach For Program Evaluation: Measuring The Benefits Of Political And Economic Integration Of Hong Kong With Mainland China," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(5), pages 705-740, August.
    4. Carvalho, Carlos & Masini, Ricardo & Medeiros, Marcelo C., 2018. "ArCo: An artificial counterfactual approach for high-dimensional panel time-series data," Journal of Econometrics, Elsevier, vol. 207(2), pages 352-380.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dennis Shen & Peng Ding & Jasjeet Sekhon & Bin Yu, 2022. "Same Root Different Leaves: Time Series and Cross-Sectional Methods in Panel Data," Papers 2207.14481,, revised Oct 2022.
    2. Viviano, Davide & Bradic, Jelena, 2023. "Synthetic Learner: Model-free inference on treatments over time," Journal of Econometrics, Elsevier, vol. 234(2), pages 691-713.
    3. Michael Funke & Kadri Männasoo & Helery Tasane, 2023. "Regional Economic Impacts of the Øresund Cross-Border Fixed Link: Cui Bono?," CESifo Working Paper Series 10557, CESifo.
    4. Luya Wang & Jeffrey S. Racine & Qiaoyu Wang, 2024. "Bootstrap Inference on a Factor Model Based Average Treatment Effects Estimator," Department of Economics Working Papers 2024-03, McMaster University.
    5. Ignacio Martinez & Jaume Vives-i-Bastida, 2022. "Bayesian and Frequentist Inference for Synthetic Controls," Papers 2206.01779,, revised Jul 2024.
    6. Bruno Ferman & Cristine Pinto, 2021. "Synthetic controls with imperfect pretreatment fit," Quantitative Economics, Econometric Society, vol. 12(4), pages 1197-1221, November.
    7. Joseph Fry, 2023. "A Method of Moments Approach to Asymptotically Unbiased Synthetic Controls," Papers 2312.01209,, revised Mar 2024.
    8. Victor Chernozhukov & Kaspar Wüthrich & Yinchu Zhu, 2019. "Inference on average treatment effects in aggregate panel data settings," CeMMAP working papers CWP32/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Victor Chernozhukov & Kaspar Wuthrich & Yinchu Zhu, 2018. "A $t$-test for synthetic controls," Papers 1812.10820,, revised Jan 2024.
    10. Li, Xingyu & Shen, Yan & Zhou, Qiankun, 2024. "Confidence intervals of treatment effects in panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 240(1).
    11. Marçal, Emerson Fernandes & Cunha, Ronan & Merlin, Giovanni Tondin & Simões, Oscar, 2017. "The aftermath of 2008 turmoil on Brazilian economy: Tsunami or “Marolinha”?," Textos para discussão 459, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
    12. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490,, revised Aug 2022.
    13. Andrii Melnychuk, 2024. "Synthetic Controls with spillover effects: A comparative study," Papers 2405.01645,
    14. Ruoxuan Xiong & Markus Pelger, 2019. "Large Dimensional Latent Factor Modeling with Missing Observations and Applications to Causal Inference," Papers 1910.08273,, revised Jan 2022.
    15. David Gilchrist & Thomas Emery & Nuno Garoupa & Rok Spruk, 2023. "Synthetic Control Method: A tool for comparative case studies in economic history," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 409-445, April.
    16. Bruno Ferman, 2021. "On the Properties of the Synthetic Control Estimator with Many Periods and Many Controls," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1764-1772, October.
    17. Lea Bottmer & Guido Imbens & Jann Spiess & Merrill Warnick, 2021. "A Design-Based Perspective on Synthetic Control Methods," Papers 2101.09398,, revised Jul 2023.
    18. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458,, revised Jun 2024.
    19. Dennis Shen & Peng Ding & Jasjeet Sekhon & Bin Yu, 2023. "Same Root Different Leaves: Time Series and Cross‐Sectional Methods in Panel Data," Econometrica, Econometric Society, vol. 91(6), pages 2125-2154, November.
    20. Jianqing Fan & Ricardo Masini & Marcelo C. Medeiros, 2022. "Do We Exploit all Information for Counterfactual Analysis? Benefits of Factor Models and Idiosyncratic Correction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(538), pages 574-590, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2403.08130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.