IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2401.05337.html
   My bibliography  Save this paper

Optimal Linear Signal: An Unsupervised Machine Learning Framework to Optimize PnL with Linear Signals

Author

Listed:
  • Pierre Renucci

Abstract

This study presents an unsupervised machine learning approach for optimizing Profit and Loss (PnL) in quantitative finance. Our algorithm, akin to an unsupervised variant of linear regression, maximizes the Sharpe Ratio of PnL generated from signals constructed linearly from exogenous variables. The methodology employs a linear relationship between exogenous variables and the trading signal, with the objective of maximizing the Sharpe Ratio through parameter optimization. Empirical application on an ETF representing U.S. Treasury bonds demonstrates the model's effectiveness, supported by regularization techniques to mitigate overfitting. The study concludes with potential avenues for further development, including generalized time steps and enhanced corrective terms.

Suggested Citation

  • Pierre Renucci, 2023. "Optimal Linear Signal: An Unsupervised Machine Learning Framework to Optimize PnL with Linear Signals," Papers 2401.05337, arXiv.org.
  • Handle: RePEc:arx:papers:2401.05337
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2401.05337
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mahsa Ghorbani & Edwin K P Chong, 2020. "Stock price prediction using principal components," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-20, March.
    2. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2022. "Deep Stochastic Optimization in Finance," Papers 2205.04604, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Josef Teichmann & Hanna Wutte, 2023. "Machine Learning-powered Pricing of the Multidimensional Passport Option," Papers 2307.14887, arXiv.org.
    2. Ali Fathi & Bernhard Hientzsch, 2023. "A Comparison of Reinforcement Learning and Deep Trajectory Based Stochastic Control Agents for Stepwise Mean-Variance Hedging," Papers 2302.07996, arXiv.org, revised Nov 2023.
    3. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2022. "Neural Optimal Stopping Boundary," Papers 2205.04595, arXiv.org, revised May 2023.
    4. Michael Greenacre & Patrick J. F Groenen & Trevor Hastie & Alfonso Iodice d’Enza & Angelos Markos & Elena Tuzhilina, 2023. "Principal component analysis," Economics Working Papers 1856, Department of Economics and Business, Universitat Pompeu Fabra.
    5. Mahsa Ghorbani & Edwin K. P. Chong, 2022. "A dimension reduction method for stock-price prediction using multiple predictors," Operational Research, Springer, vol. 22(3), pages 2859-2878, July.
    6. Bernhard Hientzsch, 2023. "Reinforcement Learning and Deep Stochastic Optimal Control for Final Quadratic Hedging," Papers 2401.08600, arXiv.org.
    7. Anders Max Reppen & Halil Mete Soner, 2023. "Deep empirical risk minimization in finance: Looking into the future," Mathematical Finance, Wiley Blackwell, vol. 33(1), pages 116-145, January.
    8. Vrinda Dhingra & Amita Sharma & Shiv K. Gupta, 2021. "Sectoral portfolio optimization by judicious selection of financial ratios via PCA," Papers 2106.11484, arXiv.org, revised Jan 2023.
    9. Xia, Min & Shao, Haidong & Williams, Darren & Lu, Siliang & Shu, Lei & de Silva, Clarence W., 2021. "Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning," Reliability Engineering and System Safety, Elsevier, vol. 215(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2401.05337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.