IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2311.10801.html
   My bibliography  Save this paper

Reinforcement Learning with Maskable Stock Representation for Portfolio Management in Customizable Stock Pools

Author

Listed:
  • Wentao Zhang
  • Yilei Zhao
  • Shuo Sun
  • Jie Ying
  • Yonggang Xie
  • Zitao Song
  • Xinrun Wang
  • Bo An

Abstract

Portfolio management (PM) is a fundamental financial trading task, which explores the optimal periodical reallocation of capitals into different stocks to pursue long-term profits. Reinforcement learning (RL) has recently shown its potential to train profitable agents for PM through interacting with financial markets. However, existing work mostly focuses on fixed stock pools, which is inconsistent with investors' practical demand. Specifically, the target stock pool of different investors varies dramatically due to their discrepancy on market states and individual investors may temporally adjust stocks they desire to trade (e.g., adding one popular stocks), which lead to customizable stock pools (CSPs). Existing RL methods require to retrain RL agents even with a tiny change of the stock pool, which leads to high computational cost and unstable performance. To tackle this challenge, we propose EarnMore, a rEinforcement leARNing framework with Maskable stOck REpresentation to handle PM with CSPs through one-shot training in a global stock pool (GSP). Specifically, we first introduce a mechanism to mask out the representation of the stocks outside the target pool. Second, we learn meaningful stock representations through a self-supervised masking and reconstruction process. Third, a re-weighting mechanism is designed to make the portfolio concentrate on favorable stocks and neglect the stocks outside the target pool. Through extensive experiments on 8 subset stock pools of the US stock market, we demonstrate that EarnMore significantly outperforms 14 state-of-the-art baselines in terms of 6 popular financial metrics with over 40% improvement on profit.

Suggested Citation

  • Wentao Zhang & Yilei Zhao & Shuo Sun & Jie Ying & Yonggang Xie & Zitao Song & Xinrun Wang & Bo An, 2023. "Reinforcement Learning with Maskable Stock Representation for Portfolio Management in Customizable Stock Pools," Papers 2311.10801, arXiv.org, revised Feb 2024.
  • Handle: RePEc:arx:papers:2311.10801
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2311.10801
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alhussein Fawzi & Matej Balog & Aja Huang & Thomas Hubert & Bernardino Romera-Paredes & Mohammadamin Barekatain & Alexander Novikov & Francisco J. R. Ruiz & Julian Schrittwieser & Grzegorz Swirszcz & , 2022. "Discovering faster matrix multiplication algorithms with reinforcement learning," Nature, Nature, vol. 610(7930), pages 47-53, October.
    2. Zhengyao Jiang & Dixing Xu & Jinjun Liang, 2017. "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem," Papers 1706.10059, arXiv.org, revised Jul 2017.
    3. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    4. Poterba, James M. & Summers, Lawrence H., 1988. "Mean reversion in stock prices : Evidence and Implications," Journal of Financial Economics, Elsevier, vol. 22(1), pages 27-59, October.
    5. Narasimhan Jegadeesh, 2002. "Cross-Sectional and Time-Series Determinants of Momentum Returns," The Review of Financial Studies, Society for Financial Studies, vol. 15(1), pages 143-157, March.
    6. Xiao Yang & Weiqing Liu & Dong Zhou & Jiang Bian & Tie-Yan Liu, 2020. "Qlib: An AI-oriented Quantitative Investment Platform," Papers 2009.11189, arXiv.org.
    7. Harrison Hong & Jeremy C. Stein, 1999. "A Unified Theory of Underreaction, Momentum Trading, and Overreaction in Asset Markets," Journal of Finance, American Finance Association, vol. 54(6), pages 2143-2184, December.
    8. Fuli Feng & Xiangnan He & Xiang Wang & Cheng Luo & Yiqun Liu & Tat-Seng Chua, 2018. "Temporal Relational Ranking for Stock Prediction," Papers 1809.09441, arXiv.org, revised Jan 2019.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Ding, 2008. "The 52-week high and momentum investing in international stock indexes," The Quarterly Review of Economics and Finance, Elsevier, vol. 48(1), pages 61-77, February.
    2. Shuo Sun & Wanqi Xue & Rundong Wang & Xu He & Junlei Zhu & Jian Li & Bo An, 2021. "DeepScalper: A Risk-Aware Reinforcement Learning Framework to Capture Fleeting Intraday Trading Opportunities," Papers 2201.09058, arXiv.org, revised Aug 2022.
    3. Boudt, Kris & Raza, Muhammad Wajid & Wauters, Marjan, 2019. "Evaluating the Shariah-compliance of equity portfolios: The weighting method matters," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 406-417.
    4. Wen-Jun Xue & Li-Wen Zhang, 2016. "Stock Return Autocorrelations and Predictability in the Chinese Stock Market: Evidence from Threshold Quantile Autoregressive Models," Working Papers 1605, Florida International University, Department of Economics.
    5. Stephen Foerster, 2011. "Double then Nothing: Why Stock Investments Relying on Simple Heuristics May Disappoint," Review of Behavioral Finance, Emerald Group Publishing Limited, vol. 3(2), pages 115-140, September.
    6. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    7. Shi, Leilei & Wang, Binghong & Guo, Xinshuai & Li, Honggang, 2021. "A price dynamic equilibrium model with trading volume weights based on a price-volume probability wave differential equation," International Review of Financial Analysis, Elsevier, vol. 74(C).
    8. Xue, Wen-Jun & Zhang, Li-Wen, 2017. "Stock return autocorrelations and predictability in the Chinese stock market—Evidence from threshold quantile autoregressive models," Economic Modelling, Elsevier, vol. 60(C), pages 391-401.
    9. Li, Kai, 2021. "Nonlinear effect of sentiment on momentum," Journal of Economic Dynamics and Control, Elsevier, vol. 133(C).
    10. Ichkitidze, Yuri, 2018. "Temporary price trends in the stock market with rational agents," The Quarterly Review of Economics and Finance, Elsevier, vol. 68(C), pages 103-117.
    11. Tobias Wiest, 2023. "Momentum: what do we know 30 years after Jegadeesh and Titman’s seminal paper?," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 37(1), pages 95-114, March.
    12. Sandrine Jacob Leal, 2015. "Fundamentalists, chartists and asset pricing anomalies," Quantitative Finance, Taylor & Francis Journals, vol. 15(11), pages 1837-1850, November.
    13. Sandrine Jacob Leal, 2015. "Fundamentalists, Chartists and Asset pricing anomalies," Post-Print hal-01508002, HAL.
    14. Chou, Pin-Huang & Wei, K.C. John & Chung, Huimin, 2007. "Sources of contrarian profits in the Japanese stock market," Journal of Empirical Finance, Elsevier, vol. 14(3), pages 261-286, June.
    15. Shuo Sun & Rundong Wang & Bo An, 2022. "Quantitative Stock Investment by Routing Uncertainty-Aware Trading Experts: A Multi-Task Learning Approach," Papers 2207.07578, arXiv.org.
    16. Neely, Christopher J. & Weller, Paul, 2000. "Predictability in International Asset Returns: A Reexamination," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 35(4), pages 601-620, December.
    17. Chris Stivers & Licheng Sun, 2013. "Market Cycles and the Performance of Relative Strength Strategies," Financial Management, Financial Management Association International, vol. 42(2), pages 263-290, June.
    18. Emmanouil Mavrakis & Christos Alexakis, 2018. "Statistical Arbitrage Strategies under Different Market Conditions: The Case of the Greek Banking Sector," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 17(2), pages 159-185, August.
    19. He, Xue-Zhong & Li, Kai & Santi, Caterina & Shi, Lei, 2022. "Social interaction, volatility clustering, and momentum," Journal of Economic Behavior & Organization, Elsevier, vol. 203(C), pages 125-149.
    20. Ka Po Kung, 2022. "Efficiency of the Stock Markets after the 2008 Financial Crisis: Evidence from the Four Asian Dragons," Eurasian Journal of Business and Management, Eurasian Publications, vol. 10(2), pages 101-115.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2311.10801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.