IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2309.04116.html
   My bibliography  Save this paper

Aggregation of financial markets

Author

Listed:
  • Georg Menz
  • Moritz Vo{ss}

Abstract

We present a formal framework for the aggregation of financial markets mediated by arbitrage. Our main tool is to characterize markets via utility functions and to employ a one-to-one correspondence to limit order book states. Inspired by the theory of thermodynamics, we argue that the arbitrage-mediated aggregation mechanism gives rise to a market-dynamical entropy, which quantifies the loss of liquidity caused by aggregation. As a concrete guiding example, we illustrate our general approach with the Uniswap v2 automated market maker protocol used in decentralized cryptocurrency exchanges, which we characterize as a so-called ideal market. We derive its equivalent limit order book representation and explicitly compute the arbitrage-mediated aggregation of two liquidity pools of the same asset pair with different marginal prices. We also discuss future directions of research in this emerging theory of market dynamics.

Suggested Citation

  • Georg Menz & Moritz Vo{ss}, 2023. "Aggregation of financial markets," Papers 2309.04116, arXiv.org, revised Sep 2024.
  • Handle: RePEc:arx:papers:2309.04116
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2309.04116
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paul Embrechts & Marius Hofert, 2013. "A note on generalized inverses," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 423-432, June.
    2. Maxim Bichuch & Zachary Feinstein, 2022. "Axioms for Automated Market Makers: A Mathematical Framework in FinTech and Decentralized Finance," Papers 2210.01227, arXiv.org, revised Feb 2025.
    3. Deborah Miori & Mihai Cucuringu, 2022. "DeFi: data-driven characterisation of Uniswap v3 ecosystem & an ideal crypto law for liquidity pools," Papers 2301.13009, arXiv.org, revised Jan 2023.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silvana M. Pesenti & Pietro Millossovich & Andreas Tsanakas, 2023. "Differential Quantile-Based Sensitivity in Discontinuous Models," Papers 2310.06151, arXiv.org, revised Oct 2024.
    2. Hofert Marius & Memartoluie Amir & Saunders David & Wirjanto Tony, 2017. "Improved algorithms for computing worst Value-at-Risk," Statistics & Risk Modeling, De Gruyter, vol. 34(1-2), pages 13-31, June.
    3. Basei, Matteo & Ferrari, Giorgio & Rodosthenous, Neofytos, 2023. "Uncertainty over Uncertainty in Environmental Policy Adoption: Bayesian Learning of Unpredictable Socioeconomic Costs," Center for Mathematical Economics Working Papers 677, Center for Mathematical Economics, Bielefeld University.
    4. Matthias Scherer & Henrik Sloot, 2019. "Exogenous shock models: analytical characterization and probabilistic construction," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(8), pages 931-959, November.
    5. Oertel Frank, 2015. "An analysis of the Rüschendorf transform - with a view towards Sklar’s Theorem," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-13, September.
    6. Jianxi Su & Edward Furman, 2016. "Multiple risk factor dependence structures: Copulas and related properties," Papers 1610.02126, arXiv.org.
    7. Sloot Henrik, 2020. "The deFinetti representation of generalised Marshall–Olkin sequences," Dependence Modeling, De Gruyter, vol. 8(1), pages 107-118, January.
    8. Roger Lee, 2023. "All AMMs are CFMMs. All DeFi markets have invariants. A DeFi market is arbitrage-free if and only if it has an increasing invariant," Papers 2310.09782, arXiv.org, revised Dec 2023.
    9. Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2022. "Functional Sequential Treatment Allocation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(539), pages 1311-1323, September.
    10. M. Burzoni & I. Peri & C. M. Ruffo, 2017. "On the properties of the Lambda value at risk: robustness, elicitability and consistency," Quantitative Finance, Taylor & Francis Journals, vol. 17(11), pages 1735-1743, November.
    11. Ismaël Mourifié & Marc Henry & Romuald Méango, 2020. "Sharp Bounds and Testability of a Roy Model of STEM Major Choices," Journal of Political Economy, University of Chicago Press, vol. 128(8), pages 3220-3283.
    12. Cyril Bénézet & Emmanuel Gobet & Rodrigo Targino, 2021. "Transform MCMC schemes for sampling intractable factor copula models," Working Papers hal-03334526, HAL.
    13. Ernest Aboagye & Vali Asimit & Tsz Chai Fung & Liang Peng & Qiuqi Wang, 2024. "A Revisit of the Optimal Excess-of-Loss Contract," Papers 2405.00188, arXiv.org.
    14. Sergey Goncharov & Andrey Nechesov, 2023. "Axiomatization of Blockchain Theory," Mathematics, MDPI, vol. 11(13), pages 1-16, July.
    15. Arvydas Astrauskas, 2023. "Some Bounds for the Expectations of Functions on Order Statistics and Their Applications," Journal of Theoretical Probability, Springer, vol. 36(2), pages 1116-1147, June.
    16. Cyril Bénézet & Emmanuel Gobet & Rodrigo Targino, 2023. "Transform MCMC Schemes for Sampling Intractable Factor Copula Models," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-41, March.
    17. Masaaki Fukasawa & Basile Maire & Marcus Wunsch, 2025. "Liquidity provision of utility indifference type in decentralized exchanges," Papers 2502.01931, arXiv.org.
    18. Peplluis R. Esteva & Alberto Ballesteros Rodr'iguez, 2023. "Invoice discounting using kelly criterion by automated market makers-like implementations," Papers 2302.09009, arXiv.org.
    19. Mantas Dirma & Saulius Paukštys & Jonas Šiaulys, 2021. "Tails of the Moments for Sums with Dominatedly Varying Random Summands," Mathematics, MDPI, vol. 9(8), pages 1-26, April.
    20. Paolo Guasoni & Andrea Meireles‐Rodrigues, 2024. "Reference dependence and endogenous anchors," Mathematical Finance, Wiley Blackwell, vol. 34(3), pages 925-976, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2309.04116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.