Tails of the Moments for Sums with Dominatedly Varying Random Summands
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Shijie Wang & Yiyu Hu & LianQiang Yang & Wensheng Wang, 2018. "Randomly weighted sums under a wide type of dependence structure with application to conditional tail expectation," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(20), pages 5054-5063, October.
- Paul Embrechts & Marius Hofert, 2013. "A note on generalized inverses," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 423-432, June.
- Cline, D. B. H. & Samorodnitsky, G., 1994. "Subexponentiality of the product of independent random variables," Stochastic Processes and their Applications, Elsevier, vol. 49(1), pages 75-98, January.
- Dickson,David C. M., 2016. "Insurance Risk and Ruin," Cambridge Books, Cambridge University Press, number 9781107154605, October.
- Tang, Qihe & Tsitsiashvili, Gurami, 2003. "Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks," Stochastic Processes and their Applications, Elsevier, vol. 108(2), pages 299-325, December.
- Yiqing Chen, 2019. "A Renewal Shot Noise Process with Subexponential Shot Marks," Risks, MDPI, vol. 7(2), pages 1-8, June.
- Ali, Mir M. & Mikhail, N. N. & Haq, M. Safiul, 1978. "A class of bivariate distributions including the bivariate logistic," Journal of Multivariate Analysis, Elsevier, vol. 8(3), pages 405-412, September.
- Hua, Lei & Joe, Harry, 2014. "Strength of tail dependence based on conditional tail expectation," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 143-159.
- Asimit, Alexandru V. & Furman, Edward & Tang, Qihe & Vernic, Raluca, 2011. "Asymptotics for risk capital allocations based on Conditional Tail Expectation," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 310-324.
- Nyrhinen, Harri, 1999. "On the ruin probabilities in a general economic environment," Stochastic Processes and their Applications, Elsevier, vol. 83(2), pages 319-330, October.
- Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
- Li, Jinzhu, 2013. "On pairwise quasi-asymptotically independent random variables and their applications," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2081-2087.
- Yang, Yang & Wang, Yuebao, 2010. "Asymptotics for ruin probability of some negatively dependent risk models with a constant interest rate and dominatedly-varying-tailed claims," Statistics & Probability Letters, Elsevier, vol. 80(3-4), pages 143-154, February.
- Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
- Hongyan Fang & Saisai Ding & Xiaoqin Li & Wenzhi Yang, 2020. "Asymptotic Approximations of Ratio Moments Based on Dependent Sequences," Mathematics, MDPI, vol. 8(3), pages 1-18, March.
- Dickson,David C. M., 2005. "Insurance Risk and Ruin," Cambridge Books, Cambridge University Press, number 9780521846400.
- Shijie Wang & Cen Chen & Xuejun Wang, 2017. "Some novel results on pairwise quasi-asymptotical independence with applications to risk theory," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(18), pages 9075-9085, September.
- Yang, Yang & Ignatavičiūtė, Eglė & Šiaulys, Jonas, 2015. "Conditional tail expectation of randomly weighted sums with heavy-tailed distributions," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 20-28.
- Dhaene, J. & Goovaerts, M. J., 1997. "On the dependency of risks in the individual life model," Insurance: Mathematics and Economics, Elsevier, vol. 19(3), pages 243-253, May.
- Brockwell, A.E., 2007. "Universal residuals: A multivariate transformation," Statistics & Probability Letters, Elsevier, vol. 77(14), pages 1473-1478, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gustas Mikutavičius & Jonas Šiaulys, 2023. "Product Convolution of Generalized Subexponential Distributions," Mathematics, MDPI, vol. 11(1), pages 1-11, January.
- Saulius Paukštys & Jonas Šiaulys & Remigijus Leipus, 2023. "Truncated Moments for Heavy-Tailed and Related Distribution Classes," Mathematics, MDPI, vol. 11(9), pages 1-15, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Leipus, Remigijus & Paukštys, Saulius & Šiaulys, Jonas, 2021. "Tails of higher-order moments of sums with heavy-tailed increments and application to the Haezendonck–Goovaerts risk measure," Statistics & Probability Letters, Elsevier, vol. 170(C).
- Jaunė, Eglė & Šiaulys, Jonas, 2022. "Asymptotic risk decomposition for regularly varying distributions with tail dependence," Applied Mathematics and Computation, Elsevier, vol. 427(C).
- Hongmin Xiao & Lin Xie, 2018. "Asymptotic Ruin Probability of a Bidimensional Risk Model Based on Entrance Processes with Constant Interest Rate," Risks, MDPI, vol. 6(4), pages 1-12, November.
- Gustas Mikutavičius & Jonas Šiaulys, 2023. "Product Convolution of Generalized Subexponential Distributions," Mathematics, MDPI, vol. 11(1), pages 1-11, January.
- Yang, Yingying & Hu, Shuhe & Wu, Tao, 2011. "The tail probability of the product of dependent random variables from max-domains of attraction," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1876-1882.
- Yang, Yang & Ignatavičiūtė, Eglė & Šiaulys, Jonas, 2015. "Conditional tail expectation of randomly weighted sums with heavy-tailed distributions," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 20-28.
- Gao, Qingwu & Liu, Xijun, 2013. "Uniform asymptotics for the finite-time ruin probability with upper tail asymptotically independent claims and constant force of interest," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1527-1538.
- Jostein Paulsen, 2008. "Ruin models with investment income," Papers 0806.4125, arXiv.org, revised Dec 2008.
- Ji, Liuyan & Tan, Ken Seng & Yang, Fan, 2021. "Tail dependence and heavy tailedness in extreme risks," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 282-293.
- Li, Jinzhu, 2016. "Uniform asymptotics for a multi-dimensional time-dependent risk model with multivariate regularly varying claims and stochastic return," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 195-204.
- Sun, Ying & Wei, Li, 2014. "The finite-time ruin probability with heavy-tailed and dependent insurance and financial risks," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 178-183.
- Chen, Yiqing & Liu, Jiajun & Liu, Fei, 2015. "Ruin with insurance and financial risks following the least risky FGM dependence structure," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 98-106.
- Xin-mei Shen & Zheng-yan Lin & Yi Zhang, 2009. "Uniform Estimate for Maximum of Randomly Weighted Sums with Applications to Ruin Theory," Methodology and Computing in Applied Probability, Springer, vol. 11(4), pages 669-685, December.
- Zhang, Yi & Shen, Xinmei & Weng, Chengguo, 2009. "Approximation of the tail probability of randomly weighted sums and applications," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 655-675, February.
- Qu, Zhihui & Chen, Yu, 2013. "Approximations of the tail probability of the product of dependent extremal random variables and applications," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 169-178.
- Chen, Yu & Su, Chun, 2006. "Finite time ruin probability with heavy-tailed insurance and financial risks," Statistics & Probability Letters, Elsevier, vol. 76(16), pages 1812-1820, October.
- Holly Brannelly & Andrea Macrina & Gareth W. Peters, 2021. "Stochastic measure distortions induced by quantile processes for risk quantification and valuation," Papers 2201.02045, arXiv.org.
- Chen, Yiqing, 2017. "Interplay of subexponential and dependent insurance and financial risks," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 78-83.
- Embrechts Paul & Wang Ruodu, 2015. "Seven Proofs for the Subadditivity of Expected Shortfall," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-15, October.
- Sofiane Aboura, 2014. "When the U.S. Stock Market Becomes Extreme?," Risks, MDPI, vol. 2(2), pages 1-15, May.
More about this item
Keywords
tail expectation; asymptotic bound; quasi-asymptotic independence; heavy-tailed distribution; dominated variation; copula;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:8:p:824-:d:533481. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.