IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2307.13624.html
   My bibliography  Save this paper

Dynamic Function Market Maker

Author

Listed:
  • Arman Abgaryan
  • Utkarsh Sharma

Abstract

Decentralised automated market makers (AMMs) have gained significant attention recently. We propose an adaptive and automated Dynamic Function Market Maker (DFMM) that addresses challenges in this space. Our DFMM protocol includes a data aggregator and an order routing mechanism. It synchronises price-sensitive market information, asserting the principle of one price, and ensuring market efficiency. The data aggregator includes a virtual order book, asserting efficient asset pricing by staying synchronised with information from external venues, including competitors. The protocol's rebalancing and order routing method optimises inventory risk through arbitrageurs, who are more likely to assist DFMM, enhancing protocol stability. DFMM incorporates protective buffers with non-linear derivative instruments to manage risk and mitigate losses caused by market volatility. The protocol employs an algorithmic accounting-asset, connecting all pools and resolving the issue of segregated pools and risk transfer. The settlement process is entirely protocol-driven, maximising risk management efficiency, and eliminating subjective market risk assessments. In essence, DFMM offers a fully automated, decentralised, and robust solution for automated market making. It aims to provide long-term viability and stability in an asset class that demands robustness.

Suggested Citation

  • Arman Abgaryan & Utkarsh Sharma, 2023. "Dynamic Function Market Maker," Papers 2307.13624, arXiv.org.
  • Handle: RePEc:arx:papers:2307.13624
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2307.13624
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guillermo Angeris & Tarun Chitra, 2020. "Improved Price Oracles: Constant Function Market Makers," Papers 2003.10001, arXiv.org, revised Jun 2020.
    2. Vijay Mohan, 2022. "Automated market makers and decentralized exchanges: a DeFi primer," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-48, December.
    3. Guillermo Angeris & Akshay Agrawal & Alex Evans & Tarun Chitra & Stephen Boyd, 2021. "Constant Function Market Makers: Multi-Asset Trades via Convex Optimization," Papers 2107.12484, arXiv.org.
    4. Yongge Wang, 2020. "Automated Market Makers for Decentralized Finance (DeFi)," Papers 2009.01676, arXiv.org, revised Sep 2020.
    5. Johannes Rude Jensen & Mohsen Pourpouneh & Kurt Nielsen & Omri Ross, 2021. "The Homogenous Properties of Automated Market Makers," Papers 2105.02782, arXiv.org.
    6. Kenneth A. Froot & Michael Kim & Kenneth Rogoff, 2019. "The Law of One Price Over 700 Years," Annals of Economics and Finance, Society for AEF, vol. 20(1), pages 1-35, May.
    7. Lioba Heimbach & Ye Wang & Roger Wattenhofer, 2021. "Behavior of Liquidity Providers in Decentralized Exchanges," Papers 2105.13822, arXiv.org, revised Oct 2021.
    8. Guillermo Angeris & Tarun Chitra & Alex Evans & Stephen Boyd, 2022. "Optimal Routing for Constant Function Market Makers," Papers 2204.05238, arXiv.org.
    9. Robin Hanson, 2003. "Combinatorial Information Market Design," Information Systems Frontiers, Springer, vol. 5(1), pages 107-119, January.
    10. Robin Hanson, 2007. "Logarithmic Market Scoring Rules for Modular Combinatorial Information Aggregation," Journal of Prediction Markets, University of Buckingham Press, vol. 1(1), pages 3-15, February.
    11. Alex Evans, 2020. "Liquidity Provider Returns in Geometric Mean Markets," Papers 2006.08806, arXiv.org, revised Jul 2020.
    12. Ken McCormick, 1997. "An Essay on the Origin of the Rational Utility Maximization Hypothesis and a Suggested Modification," Eastern Economic Journal, Eastern Economic Association, vol. 23(1), pages 17-30, Winter.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arman Abgaryan & Utkarsh Sharma, 2023. "Intermediating DFMM Asset (IDA)," Papers 2311.05234, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philippe Bergault & Louis Bertucci & David Bouba & Olivier Gu'eant, 2022. "Automated Market Makers: Mean-Variance Analysis of LPs Payoffs and Design of Pricing Functions," Papers 2212.00336, arXiv.org, revised Nov 2023.
    2. Daniel Kirste & Niclas Kannengie{ss}er & Ricky Lamberty & Ali Sunyaev, 2023. "How Automated Market Makers Approach the Thin Market Problem in Cryptoeconomic Systems," Papers 2309.12818, arXiv.org, revised Sep 2023.
    3. Dev Churiwala & Bhaskar Krishnamachari, 2022. "QLAMMP: A Q-Learning Agent for Optimizing Fees on Automated Market Making Protocols," Papers 2211.14977, arXiv.org.
    4. Sam M. Werner & Daniel Perez & Lewis Gudgeon & Ariah Klages-Mundt & Dominik Harz & William J. Knottenbelt, 2021. "SoK: Decentralized Finance (DeFi)," Papers 2101.08778, arXiv.org, revised Sep 2022.
    5. Guillermo Angeris & Alex Evans & Tarun Chitra, 2021. "Replicating Monotonic Payoffs Without Oracles," Papers 2111.13740, arXiv.org.
    6. Johannes Rude Jensen & Mohsen Pourpouneh & Kurt Nielsen & Omri Ross, 2021. "The Homogenous Properties of Automated Market Makers," Papers 2105.02782, arXiv.org.
    7. Guillermo Angeris & Akshay Agrawal & Alex Evans & Tarun Chitra & Stephen Boyd, 2021. "Constant Function Market Makers: Multi-Asset Trades via Convex Optimization," Papers 2107.12484, arXiv.org.
    8. Vijay Mohan, 2022. "Automated market makers and decentralized exchanges: a DeFi primer," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-48, December.
    9. Hamed Amini & Maxim Bichuch & Zachary Feinstein, 2023. "Decentralized Prediction Markets and Sports Books," Papers 2307.08768, arXiv.org, revised Aug 2023.
    10. Guillermo Angeris & Alex Evans & Tarun Chitra, 2020. "When does the tail wag the dog? Curvature and market making," Papers 2012.08040, arXiv.org.
    11. Jan Arvid Berg & Robin Fritsch & Lioba Heimbach & Roger Wattenhofer, 2022. "An Empirical Study of Market Inefficiencies in Uniswap and SushiSwap," Papers 2203.07774, arXiv.org, revised May 2022.
    12. Lioba Heimbach & Eric Schertenleib & Roger Wattenhofer, 2022. "Risks and Returns of Uniswap V3 Liquidity Providers," Papers 2205.08904, arXiv.org, revised Sep 2022.
    13. Bhaskar Krishnamachari & Qi Feng & Eugenio Grippo, 2021. "Dynamic Curves for Decentralized Autonomous Cryptocurrency Exchanges," Papers 2101.02778, arXiv.org.
    14. Rafael Frongillo, 2022. "Quantum Information Elicitation," Papers 2203.07469, arXiv.org.
    15. Karimi, Majid & Zaerpour, Nima, 2022. "Put your money where your forecast is: Supply chain collaborative forecasting with cost-function-based prediction markets," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1035-1049.
    16. Galanis, S. & Ioannou, C. & Kotronis, S., 2019. "Information Aggregation Under Ambiguity: Theory and Experimental Evidence," Working Papers 20/05, Department of Economics, City University London.
    17. Matthias Nadler & Felix Bekemeier & Fabian Schar, 2022. "DeFi Risk Transfer: Towards A Fully Decentralized Insurance Protocol," Papers 2212.10308, arXiv.org.
    18. Mikuláš Gangur & Miroslav Plevný, 2014. "Tools for Consumer Rights Protection in the Prediction of Electronic Virtual Market and Technological Changes," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 16(36), pages 578-578, May.
    19. Galanis Spyros & Kotronis Stelios, 2021. "Updating Awareness and Information Aggregation," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 21(2), pages 613-635, June.
    20. Dian Yu & Jianjun Gao & Weiping Wu & Zizhuo Wang, 2022. "Price Interpretability of Prediction Markets: A Convergence Analysis," Papers 2205.08913, arXiv.org, revised Nov 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2307.13624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.