IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2111.13740.html
   My bibliography  Save this paper

Replicating Monotonic Payoffs Without Oracles

Author

Listed:
  • Guillermo Angeris
  • Alex Evans
  • Tarun Chitra

Abstract

In this paper, we show that any monotonic payoff can be replicated using only liquidity provider shares in constant function market makers (CFMMs), without the need for additional collateral or oracles. Such payoffs include cash-or-nothing calls and capped calls, among many others, and we give an explicit method for finding a trading function matching these payoffs. For example, this method provides an easy way to show that the trading function for maintaining a portfolio where 50% of the portfolio is allocated in one asset and 50% in the other is exactly the constant product market maker (e.g., Uniswap) from first principles. We additionally provide a simple formula for the total earnings of an arbitrageur who is arbitraging against these CFMMs.

Suggested Citation

  • Guillermo Angeris & Alex Evans & Tarun Chitra, 2021. "Replicating Monotonic Payoffs Without Oracles," Papers 2111.13740, arXiv.org.
  • Handle: RePEc:arx:papers:2111.13740
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2111.13740
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guillermo Angeris & Tarun Chitra, 2020. "Improved Price Oracles: Constant Function Market Makers," Papers 2003.10001, arXiv.org, revised Jun 2020.
    2. Guillermo Angeris & Akshay Agrawal & Alex Evans & Tarun Chitra & Stephen Boyd, 2021. "Constant Function Market Makers: Multi-Asset Trades via Convex Optimization," Papers 2107.12484, arXiv.org.
    3. Tarun Chitra & Alex Evans, 2020. "Why Stake When You Can Borrow?," Papers 2006.11156, arXiv.org.
    4. Guillermo Angeris & Alex Evans & Tarun Chitra, 2021. "Replicating Market Makers," Papers 2103.14769, arXiv.org.
    5. Guillermo Angeris & Hsien-Tang Kao & Rei Chiang & Charlie Noyes & Tarun Chitra, 2019. "An analysis of Uniswap markets," Papers 1911.03380, arXiv.org, revised Feb 2021.
    6. Alex Evans & Guillermo Angeris & Tarun Chitra, 2021. "Optimal Fees for Geometric Mean Market Makers," Papers 2104.00446, arXiv.org.
    7. Alex Evans, 2020. "Liquidity Provider Returns in Geometric Mean Markets," Papers 2006.08806, arXiv.org, revised Jul 2020.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guillermo Angeris & Akshay Agrawal & Alex Evans & Tarun Chitra & Stephen Boyd, 2021. "Constant Function Market Makers: Multi-Asset Trades via Convex Optimization," Papers 2107.12484, arXiv.org.
    2. Lioba Heimbach & Eric Schertenleib & Roger Wattenhofer, 2022. "Risks and Returns of Uniswap V3 Liquidity Providers," Papers 2205.08904, arXiv.org, revised Sep 2022.
    3. Neelesh Tiruviluamala & Alexander Port & Erik Lewis, 2022. "A General Framework for Impermanent Loss in Automated Market Makers," Papers 2203.11352, arXiv.org.
    4. Maxim Bichuch & Zachary Feinstein, 2022. "Axioms for Automated Market Makers: A Mathematical Framework in FinTech and Decentralized Finance," Papers 2210.01227, arXiv.org.
    5. Sam M. Werner & Daniel Perez & Lewis Gudgeon & Ariah Klages-Mundt & Dominik Harz & William J. Knottenbelt, 2021. "SoK: Decentralized Finance (DeFi)," Papers 2101.08778, arXiv.org, revised Sep 2022.
    6. Nassib Boueri, 2021. "G3M Impermanent Loss Dynamics," Papers 2108.06593, arXiv.org, revised Jun 2022.
    7. Andrea Barbon & Angelo Ranaldo, 2021. "On The Quality Of Cryptocurrency Markets: Centralized Versus Decentralized Exchanges," Papers 2112.07386, arXiv.org, revised Oct 2022.
    8. Johannes Rude Jensen & Mohsen Pourpouneh & Kurt Nielsen & Omri Ross, 2021. "The Homogenous Properties of Automated Market Makers," Papers 2105.02782, arXiv.org.
    9. Lioba Heimbach & Ye Wang & Roger Wattenhofer, 2021. "Behavior of Liquidity Providers in Decentralized Exchanges," Papers 2105.13822, arXiv.org, revised Oct 2021.
    10. Robin Fritsch & Roger Wattenhofer, 2021. "A Note on Optimal Fees for Constant Function Market Makers," Papers 2105.13510, arXiv.org.
    11. Vijay Mohan, 2022. "Automated market makers and decentralized exchanges: a DeFi primer," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-48, December.
    12. Guillermo Angeris & Tarun Chitra & Alex Evans & Stephen Boyd, 2022. "Optimal Routing for Constant Function Market Makers," Papers 2204.05238, arXiv.org.
    13. Guillermo Angeris & Alex Evans & Tarun Chitra, 2020. "When does the tail wag the dog? Curvature and market making," Papers 2012.08040, arXiv.org.
    14. Guillermo Angeris & Alex Evans & Tarun Chitra, 2021. "Replicating Market Makers," Papers 2103.14769, arXiv.org.
    15. Alessandra Cretarola & Gianna FigĂ -Talamanca & Cyril Grunspan, 2021. "Blockchain and cryptocurrencies: economic and financial research," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 781-787, December.
    16. Daniel Z. Zanger, 2022. "G3Ms:Generalized Mean Market Makers," Papers 2208.07305, arXiv.org.
    17. Jason Milionis & Ciamac C. Moallemi & Tim Roughgarden & Anthony Lee Zhang, 2022. "Automated Market Making and Loss-Versus-Rebalancing," Papers 2208.06046, arXiv.org, revised Sep 2022.
    18. Massimo Bartoletti & James Hsin-yu Chiang & Alberto Lluch-Lafuente, 2020. "SoK: Lending Pools in Decentralized Finance," Papers 2012.13230, arXiv.org.
    19. Jiahua Xu & Krzysztof Paruch & Simon Cousaert & Yebo Feng, 2021. "SoK: Decentralized Exchanges (DEX) with Automated Market Maker (AMM) Protocols," Papers 2103.12732, arXiv.org, revised Dec 2022.
    20. Philippe Bergault & Louis Bertucci & David Bouba & Olivier Gu'eant, 2022. "Automated Market Makers: Mean-Variance Analysis of LPs Payoffs and Design of Pricing Functions," Papers 2212.00336, arXiv.org, revised Dec 2022.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2111.13740. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.