IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2307.07090.html
   My bibliography  Save this paper

Choice Models and Permutation Invariance: Demand Estimation in Differentiated Products Markets

Author

Listed:
  • Amandeep Singh
  • Ye Liu
  • Hema Yoganarasimhan

Abstract

Choice modeling is at the core of understanding how changes to the competitive landscape affect consumer choices and reshape market equilibria. In this paper, we propose a fundamental characterization of choice functions that encompasses a wide variety of extant choice models. We demonstrate how non-parametric estimators like neural nets can easily approximate such functionals and overcome the curse of dimensionality that is inherent in the non-parametric estimation of choice functions. We demonstrate through extensive simulations that our proposed functionals can flexibly capture underlying consumer behavior in a completely data-driven fashion and outperform traditional parametric models. As demand settings often exhibit endogenous features, we extend our framework to incorporate estimation under endogenous features. Further, we also describe a formal inference procedure to construct valid confidence intervals on objects of interest like price elasticity. Finally, to assess the practical applicability of our estimator, we utilize a real-world dataset from S. Berry, Levinsohn, and Pakes (1995). Our empirical analysis confirms that the estimator generates realistic and comparable own- and cross-price elasticities that are consistent with the observations reported in the existing literature.

Suggested Citation

  • Amandeep Singh & Ye Liu & Hema Yoganarasimhan, 2023. "Choice Models and Permutation Invariance: Demand Estimation in Differentiated Products Markets," Papers 2307.07090, arXiv.org, revised Feb 2024.
  • Handle: RePEc:arx:papers:2307.07090
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2307.07090
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Steven T. Berry & Philip A. Haile, 2020. "Nonparametric Identification of Differentiated Products Demand Using Micro Data," NBER Working Papers 27704, National Bureau of Economic Research, Inc.
    2. Steven T. Berry & Philip A. Haile, 2014. "Identification in Differentiated Products Markets Using Market Level Data," Econometrica, Econometric Society, vol. 82, pages 1749-1797, September.
    3. Hausman, Jerry A & Wise, David A, 1978. "A Conditional Probit Model for Qualitative Choice: Discrete Decisions Recognizing Interdependence and Heterogeneous Preferences," Econometrica, Econometric Society, vol. 46(2), pages 403-426, March.
    4. Victor Chernozhukov & Whitney K. Newey & Victor Quintas-Martinez & Vasilis Syrgkanis, 2021. "Automatic Debiased Machine Learning via Riesz Regression," Papers 2104.14737, arXiv.org, revised Mar 2024.
    5. Greene, William H. & Hensher, David A., 2003. "A latent class model for discrete choice analysis: contrasts with mixed logit," Transportation Research Part B: Methodological, Elsevier, vol. 37(8), pages 681-698, September.
    6. Daniel Ackerberg & Xiaohong Chen & Jinyong Hahn & Zhipeng Liao, 2014. "Asymptotic Efficiency of Semiparametric Two-step GMM," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(3), pages 919-943.
    7. Jose Blanchet & Guillermo Gallego & Vineet Goyal, 2016. "A Markov Chain Approximation to Choice Modeling," Operations Research, INFORMS, vol. 64(4), pages 886-905, August.
    8. Richard Blundell & Joel Horowitz & Matthias Parey, 2017. "Nonparametric Estimation of a Nonseparable Demand Function under the Slutsky Inequality Restriction," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 291-304, May.
    9. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    10. Ben-Akiva, M. & Bolduc, D. & Bradley, M., 1993. "Estimation of Travel Choice Models with Randomly Distributed Values of Time," Papers 9303, Laval - Recherche en Energie.
    11. Jeremy T. Fox & Amit Gandhi, 2016. "Nonparametric identification and estimation of random coefficients in multinomial choice models," RAND Journal of Economics, RAND Corporation, vol. 47(1), pages 118-139, February.
    12. Bo E. Honoré & Ekaterini Kyriazidou, 2000. "Panel Data Discrete Choice Models with Lagged Dependent Variables," Econometrica, Econometric Society, vol. 68(4), pages 839-874, July.
    13. Victor Chernozhukov & Whitney K. Newey & Rahul Singh, 2022. "Automatic Debiased Machine Learning of Causal and Structural Effects," Econometrica, Econometric Society, vol. 90(3), pages 967-1027, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pietro Tebaldi & Alexander Torgovitsky & Hanbin Yang, 2023. "Nonparametric Estimates of Demand in the California Health Insurance Exchange," Econometrica, Econometric Society, vol. 91(1), pages 107-146, January.
    2. Fabian Dunker & Stefan Hoderlein & Hiroaki Kaido, 2023. "Nonparametric identification of random coefficients in aggregate demand models for differentiated products," The Econometrics Journal, Royal Economic Society, vol. 26(2), pages 279-306.
    3. Nail Kashaev, 2018. "Identification and estimation of multinomial choice models with latent special covariates," Papers 1811.05555, arXiv.org, revised Mar 2022.
    4. Giovanni Compiani, 2022. "Market counterfactuals and the specification of multiproduct demand: A nonparametric approach," Quantitative Economics, Econometric Society, vol. 13(2), pages 545-591, May.
    5. Xiaohong Chen & Andres Santos, 2018. "Overidentification in Regular Models," Econometrica, Econometric Society, vol. 86(5), pages 1771-1817, September.
    6. Steven T. Berry & Philip A. Haile, 2021. "Foundations of Demand Estimation," Cowles Foundation Discussion Papers 2301, Cowles Foundation for Research in Economics, Yale University.
    7. Wang, Ao, 2023. "Sieve BLP: A semi-nonparametric model of demand for differentiated products," Journal of Econometrics, Elsevier, vol. 235(2), pages 325-351.
    8. Steven T. Berry & Philip A. Haile, 2009. "Nonparametric Identification of Multinomial Choice Demand Models with Heterogeneous Consumers," NBER Working Papers 15276, National Bureau of Economic Research, Inc.
    9. Matzkin, Rosa L., 2012. "Identification in nonparametric limited dependent variable models with simultaneity and unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 166(1), pages 106-115.
    10. Wayne Yuan Gao & Ming Li, 2020. "Robust Semiparametric Estimation in Panel Multinomial Choice Models," Papers 2009.00085, arXiv.org.
    11. Xiyuan Ren & Joseph Y. J. Chow, 2023. "Nonparametric estimation of k-modal taste heterogeneity for group level agent-based mixed logit," Papers 2309.13159, arXiv.org.
    12. Martin O'Connell & Pierre Dubois & Rachel Griffith, 2022. "The Use of Scanner Data for Economics Research," Annual Review of Economics, Annual Reviews, vol. 14(1), pages 723-745, August.
    13. Miravete, Eugenio J. & Seim, Katja & Thurk, Jeff, 2023. "Pass-through and tax incidence in differentiated product markets," International Journal of Industrial Organization, Elsevier, vol. 90(C).
    14. Arthur Lewbel, 2019. "The Identification Zoo: Meanings of Identification in Econometrics," Journal of Economic Literature, American Economic Association, vol. 57(4), pages 835-903, December.
    15. Doi, Naoshi, 2022. "A simple method to estimate discrete-type random coefficients logit models," International Journal of Industrial Organization, Elsevier, vol. 81(C).
    16. Qi Feng & J. George Shanthikumar & Mengying Xue, 2022. "Consumer Choice Models and Estimation: A Review and Extension," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 847-867, February.
    17. Matzkin, Rosa L., 2019. "Constructive identification in some nonseparable discrete choice models," Journal of Econometrics, Elsevier, vol. 211(1), pages 83-103.
    18. Jason Abaluck & Giovanni Compiani, 2020. "A Method to Estimate Discrete Choice Models that is Robust to Consumer Search," NBER Working Papers 26849, National Bureau of Economic Research, Inc.
    19. Ryan Webb, 2019. "The (Neural) Dynamics of Stochastic Choice," Management Science, INFORMS, vol. 65(1), pages 230-255, January.
    20. Lu, Zhentong & Shi, Xiaoxia & Tao, Jing, 2023. "Semi-nonparametric estimation of random coefficients logit model for aggregate demand," Journal of Econometrics, Elsevier, vol. 235(2), pages 2245-2265.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2307.07090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.