IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2306.01687.html
   My bibliography  Save this paper

Load Asymptotics and Dynamic Speed Optimization for the Greenest Path Problem: A Comprehensive Analysis

Author

Listed:
  • Poulad Moradi
  • Joachim Arts
  • Josu'e C. Vel'azquez-Mart'inez

Abstract

We study the effect of using high-resolution elevation data on the selection of the most fuel-efficient(greenest) path for different trucks in various urban environments.We adapt a variant of the Comprehensive Modal Emission Model(CMEM) to show that the optimal speed and the greenest path are slope dependent (dynamic).When there are no elevation changes in a road network, the most fuel-efficient path is the shortest path with a constant (static) optimal speed throughout.However, if the network is not flat, then the shortest path is not necessarily the greenest path, and the optimal driving speed is dynamic.We prove that the greenest path converges to an asymptotic greenest path as the payload approaches infinity and that this limiting path is attained for a finite load.In a set of extensive numerical experiments, we benchmark the CO2emissions reduction of our dynamic speed and the greenest path policies against policies that ignore elevation data.We use the geospatial data of 25major cities across 6continents.We observe numerically that the greenest path quickly diverges from the shortest path and attains the asymptotic greenest path even for moderate payloads.Based on an analysis of variance, the main determinants of the CO2emissions reduction potential are the variation of the road gradients along the shortest path as well as the relative elevation of the source from the target.Using speed data estimates for rush hour in New York City, we test CO2emissions reduction by comparing the greenest paths with optimized speeds against the fastest paths with traffic speed.We observe that selecting the greenest paths instead of the fastest paths can significantly reduce CO2emissions.Additionally,our results show that while speed optimization on uphill arcs can significantly help CO2reduction,the potential to leverage gravity for acceleration on downhill arcs is limited due to traffic congestion.

Suggested Citation

  • Poulad Moradi & Joachim Arts & Josu'e C. Vel'azquez-Mart'inez, 2023. "Load Asymptotics and Dynamic Speed Optimization for the Greenest Path Problem: A Comprehensive Analysis," Papers 2306.01687, arXiv.org, revised May 2025.
  • Handle: RePEc:arx:papers:2306.01687
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2306.01687
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Said Dabia & Emrah Demir & Tom Van Woensel, 2017. "An Exact Approach for a Variant of the Pollution-Routing Problem," Transportation Science, INFORMS, vol. 51(2), pages 607-628, May.
    2. Waltho, Cynthia & Elhedhli, Samir & Gzara, Fatma, 2019. "Green supply chain network design: A review focused on policy adoption and emission quantification," International Journal of Production Economics, Elsevier, vol. 208(C), pages 305-318.
    3. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2014. "A review of recent research on green road freight transportation," European Journal of Operational Research, Elsevier, vol. 237(3), pages 775-793.
    4. Xiao, Yiyong & Zuo, Xiaorong & Huang, Jiaoying & Konak, Abdullah & Xu, Yuchun, 2020. "The continuous pollution routing problem," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    5. Scora, George & Boriboonsomsin, Kanok & Barth, Matthew, 2015. "Value of eco-friendly route choice for heavy-duty trucks," Research in Transportation Economics, Elsevier, vol. 52(C), pages 3-14.
    6. repec:cdl:itsrrp:qt67f0v3zf is not listed on IDEAS
    7. Ehmke, Jan Fabian & Campbell, Ann M. & Thomas, Barrett W., 2018. "Optimizing for total costs in vehicle routing in urban areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 242-265.
    8. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2014. "The fleet size and mix pollution-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 239-254.
    9. Raeesi, Ramin & Zografos, Konstantinos G., 2019. "The multi-objective Steiner pollution-routing problem on congested urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 457-485.
    10. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2012. "An adaptive large neighborhood search heuristic for the Pollution-Routing Problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 346-359.
    11. Behnke, Martin & Kirschstein, Thomas, 2017. "The impact of path selection on GHG emissions in city logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 320-336.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    2. Behnke, Martin & Kirschstein, Thomas & Bierwirth, Christian, 2021. "A column generation approach for an emission-oriented vehicle routing problem on a multigraph," European Journal of Operational Research, Elsevier, vol. 288(3), pages 794-809.
    3. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem, 2021. "Green vehicle routing problem: A state-of-the-art review," Post-Print hal-03182944, HAL.
    4. Sara Ceschia & Luca Di Gaspero & Antonella Meneghetti, 2020. "Extending and Solving the Refrigerated Routing Problem," Energies, MDPI, vol. 13(23), pages 1-24, November.
    5. Qiu, Rui & Xu, Jiuping & Ke, Ruimin & Zeng, Ziqiang & Wang, Yinhai, 2020. "Carbon pricing initiatives-based bi-level pollution routing problem," European Journal of Operational Research, Elsevier, vol. 286(1), pages 203-217.
    6. Xiao, Yiyong & Zuo, Xiaorong & Huang, Jiaoying & Konak, Abdullah & Xu, Yuchun, 2020. "The continuous pollution routing problem," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    7. Ehmke, Jan Fabian & Campbell, Ann M. & Thomas, Barrett W., 2018. "Optimizing for total costs in vehicle routing in urban areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 242-265.
    8. Liu, Yiming & Yu, Yang & Baldacci, Roberto & Tang, Jiafu & Sun, Wei, 2025. "Optimizing carbon emissions in green logistics for time-dependent routing," Transportation Research Part B: Methodological, Elsevier, vol. 192(C).
    9. Dukkanci, Okan & Karsu, Özlem & Kara, Bahar Y., 2022. "Planning sustainable routes: Economic, environmental and welfare concerns," European Journal of Operational Research, Elsevier, vol. 301(1), pages 110-123.
    10. Brunner, Carlos & Giesen, Ricardo & Klapp, Mathias A. & Flórez-Calderón, Luz, 2021. "Vehicle routing problem with steep roads," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 1-17.
    11. Liu, Yiming & Roberto, Baldacci & Zhou, Jianwen & Yu, Yang & Zhang, Yu & Sun, Wei, 2023. "Efficient feasibility checks and an adaptive large neighborhood search algorithm for the time-dependent green vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 310(1), pages 133-155.
    12. Nasreddine Ouertani & Hajer Ben-Romdhane & Saoussen Krichen & Issam Nouaouri, 2022. "A vector evaluated evolutionary algorithm with exploitation reinforcement for the dynamic pollution routing problem," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1011-1038, September.
    13. Çağrı Koç, 2019. "Analysis of vehicle emissions in location-routing problem," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 1-33, March.
    14. Franceschetti, Anna & Demir, Emrah & Honhon, Dorothée & Van Woensel, Tom & Laporte, Gilbert & Stobbe, Mark, 2017. "A metaheuristic for the time-dependent pollution-routing problem," European Journal of Operational Research, Elsevier, vol. 259(3), pages 972-991.
    15. Emna Marrekchi & Walid Besbes & Diala Dhouib & Emrah Demir, 2021. "A review of recent advances in the operations research literature on the green routing problem and its variants," Annals of Operations Research, Springer, vol. 304(1), pages 529-574, September.
    16. Zhang, Shuai & Gajpal, Yuvraj & Appadoo, S.S. & Abdulkader, M.M.S., 2018. "Electric vehicle routing problem with recharging stations for minimizing energy consumption," International Journal of Production Economics, Elsevier, vol. 203(C), pages 404-413.
    17. Bektaş, Tolga & Ehmke, Jan Fabian & Psaraftis, Harilaos N. & Puchinger, Jakob, 2019. "The role of operational research in green freight transportation," European Journal of Operational Research, Elsevier, vol. 274(3), pages 807-823.
    18. Fukasawa, Ricardo & He, Qie & Song, Yongjia, 2016. "A disjunctive convex programming approach to the pollution-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 61-79.
    19. Sam Heshmati & Jannes Verstichel & Eline Esprit & Greet Vanden Berghe, 2019. "Alternative e-commerce delivery policies," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 217-248, September.
    20. Xiao, Yiyong & Konak, Abdullah, 2016. "The heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 146-166.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2306.01687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.