IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2111.01678.html
   My bibliography  Save this paper

Central Limit Theory for Models of Strategic Network Formation

Author

Listed:
  • Konrad Menzel

Abstract

We provide asymptotic approximations to the distribution of statistics that are obtained from network data for limiting sequences that let the number of nodes (agents) in the network grow large. Network formation is permitted to be strategic in that agents' incentives for link formation may depend on the ego and alter's positions in that endogenous network. Our framework does not limit the strength of these interaction effects, but assumes that the network is sparse. We show that the model can be approximated by a sampling experiment in which subnetworks are generated independently from a common equilibrium distribution, and any dependence across subnetworks is captured by state variables at the level of the entire network. Under many-player asymptotics, the leading term of the approximation error to the limiting model established in Menzel (2015b) is shown to be Gaussian, with an asymptotic bias and variance that can be estimated consistently from a single network.

Suggested Citation

  • Konrad Menzel, 2021. "Central Limit Theory for Models of Strategic Network Formation," Papers 2111.01678, arXiv.org.
  • Handle: RePEc:arx:papers:2111.01678
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2111.01678
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shuyang Sheng, 2020. "A Structural Econometric Analysis of Network Formation Games Through Subnetworks," Econometrica, Econometric Society, vol. 88(5), pages 1829-1858, September.
    2. Rust, John, 1987. "Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher," Econometrica, Econometric Society, vol. 55(5), pages 999-1033, September.
    3. Attila Ambrus & Markus Mobius & Adam Szeidl, 2014. "Consumption Risk-Sharing in Social Networks," American Economic Review, American Economic Association, vol. 104(1), pages 149-182, January.
    4. Matthew O. Jackson & Tomas Rodriguez-Barraquer & Xu Tan, 2012. "Social Capital and Social Quilts: Network Patterns of Favor Exchange," American Economic Review, American Economic Association, vol. 102(5), pages 1857-1897, August.
    5. à ureo de Paula & Seth Richards†Shubik & Elie Tamer, 2018. "Identifying Preferences in Networks With Bounded Degree," Econometrica, Econometric Society, vol. 86(1), pages 263-288, January.
    6. Che‐Lin Su & Kenneth L. Judd, 2012. "Constrained Optimization Approaches to Estimation of Structural Models," Econometrica, Econometric Society, vol. 80(5), pages 2213-2230, September.
    7. V. Joseph Hotz & Robert A. Miller, 1993. "Conditional Choice Probabilities and the Estimation of Dynamic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(3), pages 497-529.
    8. Dagsvik, John K, 1994. "Discrete and Continuous Choice, Max-Stable Processes, and Independence from Irrelevant Attributes," Econometrica, Econometric Society, vol. 62(5), pages 1179-1205, September.
    9. Heckman, James J, 1978. "Dummy Endogenous Variables in a Simultaneous Equation System," Econometrica, Econometric Society, vol. 46(4), pages 931-959, July.
    10. Sergio Currarini & Matthew O. Jackson & Paolo Pin, 2009. "An Economic Model of Friendship: Homophily, Minorities, and Segregation," Econometrica, Econometric Society, vol. 77(4), pages 1003-1045, July.
    11. de Jong, Peter, 1990. "A central limit theorem for generalized multilinear forms," Journal of Multivariate Analysis, Elsevier, vol. 34(2), pages 275-289, August.
    12. Victor Aguirregabiria & Pedro Mira, 2007. "Sequential Estimation of Dynamic Discrete Games," Econometrica, Econometric Society, vol. 75(1), pages 1-53, January.
    13. Goyal, S., 2016. "Networks and Markets," Cambridge Working Papers in Economics 1652, Faculty of Economics, University of Cambridge.
    14. Elie Tamer, 2003. "Incomplete Simultaneous Discrete Response Model with Multiple Equilibria," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(1), pages 147-165.
    15. Bresnahan, Timothy F. & Reiss, Peter C., 1991. "Empirical models of discrete games," Journal of Econometrics, Elsevier, vol. 48(1-2), pages 57-81.
    16. Mihai Manea, 2018. "Intermediation and Resale in Networks," Journal of Political Economy, University of Chicago Press, vol. 126(3), pages 1250-1301.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bryan S. Graham & Andrin Pelican, 2023. "Scenario sampling for large supermodular games," CeMMAP working papers 15/23, Institute for Fiscal Studies.
    2. Alex Centeno, 2022. "A Structural Model for Detecting Communities in Networks," Papers 2209.08380, arXiv.org, revised Oct 2022.
    3. Paul B. Ellickson & Sanjog Misra, 2011. "Structural Workshop Paper --Estimating Discrete Games," Marketing Science, INFORMS, vol. 30(6), pages 997-1010, November.
    4. Bryan S. Graham & Andrin Pelican, 2023. "Scenario Sampling for Large Supermodular Games," Papers 2307.11857, arXiv.org.
    5. Andrew Sweeting, 2009. "The strategic timing incentives of commercial radio stations: An empirical analysis using multiple equilibria," RAND Journal of Economics, RAND Corporation, vol. 40(4), pages 710-742, December.
    6. Bryan S. Graham, 2019. "Network Data," Papers 1912.06346, arXiv.org.
    7. Victor Aguirregabiria & Victor Aguirregabiria & Aviv Nevo & Aviv Nevo, 2010. "Recent Developments in Empirical IO: Dynamic Demand and Dynamic Games," Working Papers tecipa-419, University of Toronto, Department of Economics.
    8. Bryan S. Graham, 2019. "Network Data," CeMMAP working papers CWP71/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Adam Dearing & Jason R. Blevins, 2019. "Efficient and Convergent Sequential Pseudo-Likelihood Estimation of Dynamic Discrete Games," Papers 1912.10488, arXiv.org, revised Nov 2023.
    10. Wang, Yafeng & Graham, Brett, 2009. "Generalized Maximum Entropy estimation of discrete sequential move games of perfect information," MPRA Paper 21331, University Library of Munich, Germany.
    11. Patrick Bajari & C. Lanier Benkard & Jonathan Levin, 2007. "Estimating Dynamic Models of Imperfect Competition," Econometrica, Econometric Society, vol. 75(5), pages 1331-1370, September.
    12. Luis Alvarez & Cristine Pinto & Vladimir Ponczek, 2022. "Homophily in preferences or meetings? Identifying and estimating an iterative network formation model," Papers 2201.06694, arXiv.org, revised Mar 2024.
    13. Yao Luo & Peijun Sang, 2022. "Penalized Sieve Estimation of Structural Models," Papers 2204.13488, arXiv.org.
    14. Francesca Molinari, 2020. "Microeconometrics with Partial Identi?cation," CeMMAP working papers CWP15/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    15. Hiroyuki Kasahara & Katsumi Shimotsu, 2012. "Sequential Estimation of Structural Models With a Fixed Point Constraint," Econometrica, Econometric Society, vol. 80(5), pages 2303-2319, September.
    16. Shuowen Chen & Hiroaki Kaido, 2022. "Robust Tests of Model Incompleteness in the Presence of Nuisance Parameters," Papers 2208.11281, arXiv.org, revised Sep 2023.
    17. Victor Aguirregabiria & Pedro Mira, 2007. "Sequential Estimation of Dynamic Discrete Games," Econometrica, Econometric Society, vol. 75(1), pages 1-53, January.
    18. A. Ronald Gallant & Han Hong & Ahmed Khwaja, 2012. "Bayesian Estimation of a Dynamic Game with Endogenous, Partially Observed, Serially Correlated State," Working Papers 12-01, Duke University, Department of Economics.
    19. Daniel Ackerberg, 2009. "A new use of importance sampling to reduce computational burden in simulation estimation," Quantitative Marketing and Economics (QME), Springer, vol. 7(4), pages 343-376, December.
    20. Yong Tan, 2019. "Dynamic Entry With Demand And Supply Side Spillovers," Contemporary Economic Policy, Western Economic Association International, vol. 37(1), pages 86-101, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2111.01678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.