IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2106.11510.html
   My bibliography  Save this paper

Sub- and Super-solution Approach to Accuracy Analysis of Portfolio Optimization Asymptotics in Multiscale Stochastic Factor Market

Author

Listed:
  • Jean-Pierre Fouque
  • Ruimeng Hu
  • Ronnie Sircar

Abstract

The problem of portfolio optimization when stochastic factors drive returns and volatilities has been studied in previous works by the authors. In particular, they proposed asymptotic approximations for value functions and optimal strategies in the regime where these factors are running on both slow and fast timescales. However, the rigorous justification of the accuracy of these approximations has been limited to power utilities and a single factor. In this paper, we provide an accurate analysis for cases with general utility functions and two timescale factors by constructing sub- and super-solutions to the fully nonlinear problem so that their difference is at the desired level of accuracy. This approach will be valuable in various related stochastic control problems.

Suggested Citation

  • Jean-Pierre Fouque & Ruimeng Hu & Ronnie Sircar, 2021. "Sub- and Super-solution Approach to Accuracy Analysis of Portfolio Optimization Asymptotics in Multiscale Stochastic Factor Market," Papers 2106.11510, arXiv.org, revised Oct 2021.
  • Handle: RePEc:arx:papers:2106.11510
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2106.11510
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:cup:cbooks:9780521843584 is not listed on IDEAS
    2. Thaleia Zariphopoulou, 2001. "A solution approach to valuation with unhedgeable risks," Finance and Stochastics, Springer, vol. 5(1), pages 61-82.
    3. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    4. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    5. Jean-Pierre Fouque & Sebastian Jaimungal & Yuri F. Saporito, 2021. "Optimal Trading with Signals and Stochastic Price Impact," Papers 2101.10053, arXiv.org, revised Aug 2023.
    6. M. H. A. Davis & A. R. Norman, 1990. "Portfolio Selection with Transaction Costs," Mathematics of Operations Research, INFORMS, vol. 15(4), pages 676-713, November.
    7. Levon Avanesyan & Mykhaylo Shkolnikov & Ronnie Sircar, 2020. "Construction of a class of forward performance processes in stochastic factor models, and an extension of Widder’s theorem," Finance and Stochastics, Springer, vol. 24(4), pages 981-1011, October.
    8. Jean-Pierre Fouque & Ronnie Sircar & Thaleia Zariphopoulou, 2017. "Portfolio Optimization And Stochastic Volatility Asymptotics," Mathematical Finance, Wiley Blackwell, vol. 27(3), pages 704-745, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    2. Jan Kallsen & Johannes Muhle-Karbe, 2013. "The General Structure of Optimal Investment and Consumption with Small Transaction Costs," Papers 1303.3148, arXiv.org, revised May 2015.
    3. Marcos Escobar-Anel & Michel Kschonnek & Rudi Zagst, 2022. "Portfolio optimization: not necessarily concave utility and constraints on wealth and allocation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(1), pages 101-140, February.
    4. Xinfu Chen & Min Dai & Wei Jiang & Cong Qin, 2022. "Asymptotic analysis of long‐term investment with two illiquid and correlated assets," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 1133-1169, October.
    5. Baojun Bian & Xinfu Chen & Min Dai & Shuaijie Qian, 2021. "Penalty method for portfolio selection with capital gains tax," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 1013-1055, July.
    6. Dai, Min & Wang, Hefei & Yang, Zhou, 2012. "Leverage management in a bull–bear switching market," Journal of Economic Dynamics and Control, Elsevier, vol. 36(10), pages 1585-1599.
    7. Wang, Yuanrong & Aste, Tomaso, 2023. "Dynamic portfolio optimization with inverse covariance clustering," LSE Research Online Documents on Economics 117701, London School of Economics and Political Science, LSE Library.
    8. Zuo Quan Xu & Fahuai Yi, 2014. "An Optimal Consumption-Investment Model with Constraint on Consumption," Papers 1404.7698, arXiv.org.
    9. Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.
    10. Girlich, Hans-Joachim, 2003. "Transaction costs in finance and inventory research," International Journal of Production Economics, Elsevier, vol. 81(1), pages 341-350, January.
    11. Michael Monoyios, 2004. "Performance of utility-based strategies for hedging basis risk," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 245-255.
    12. Mark Broadie & Weiwei Shen, 2016. "High-Dimensional Portfolio Optimization With Transaction Costs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-49, June.
    13. Collin-Dufresne, Pierre & Daniel, Kent & Sağlam, Mehmet, 2020. "Liquidity regimes and optimal dynamic asset allocation," Journal of Financial Economics, Elsevier, vol. 136(2), pages 379-406.
    14. Chellathurai, Thamayanthi & Draviam, Thangaraj, 2007. "Dynamic portfolio selection with fixed and/or proportional transaction costs using non-singular stochastic optimal control theory," Journal of Economic Dynamics and Control, Elsevier, vol. 31(7), pages 2168-2195, July.
    15. Johannes Muhle-Karbe & Max Reppen & H. Mete Soner, 2016. "A Primer on Portfolio Choice with Small Transaction Costs," Papers 1612.01302, arXiv.org, revised May 2017.
    16. Minglian Lin & Indranil SenGupta, 2021. "Analysis of optimal portfolio on finite and small time horizons for a stochastic volatility market model," Papers 2104.06293, arXiv.org.
    17. Yang Shen, 2020. "Effect of Variance Swap in Hedging Volatility Risk," Risks, MDPI, vol. 8(3), pages 1-34, July.
    18. Alex S. L. Tse, 2020. "Dividend policy and capital structure of a defaultable firm," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 961-994, July.
    19. Jan Kallsen & Johannes Muhle-Karbe, 2009. "Utility maximization in models with conditionally independent increments," Papers 0911.3608, arXiv.org.
    20. Hung-Hsi Huang & David Jou, 2009. "Multiperiod dynamic investment for a generalized situation," Applied Financial Economics, Taylor & Francis Journals, vol. 19(21), pages 1761-1766.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2106.11510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.