IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2006.05678.html
   My bibliography  Save this paper

A framework for modeling interdependencies among households, businesses, and infrastructure systems; and their response to disruptions

Author

Listed:
  • Mateusz Iwo Dubaniowski
  • Hans R. Heinimann

Abstract

Urban systems, composed of households, businesses, and infrastructures, are continuously evolving and expanding. This has several implications because the impacts of disruptions, and the complexity and interdependence of systems, are rapidly increasing. Hence, we face a challenge in how to improve our understanding about the interdependencies among those entities, as well as their responses to disruptions. The aims of this study were to (1) create an agent that mimics the metabolism of a business or household that obtains supplies from and provides output to infrastructure systems; (2) implement a network of agents that exchange resources, as coordinated with a price mechanism; and (3) test the responses of this prototype model to disruptions. Our investigation resulted in the development of a business/household agent and a dynamically self-organizing mechanism of network coordination under disruption based on costs for production and transportation. Simulation experiments confirmed the feasibility of this new model for analyzing responses to disruptions. Among the nine disruption scenarios considered, in line with our expectations, the one combining the failures of infrastructure links and production processes had the most negative impact. We also identified areas for future research that focus on network topologies, mechanisms for resource allocation, and disruption generation.

Suggested Citation

  • Mateusz Iwo Dubaniowski & Hans R. Heinimann, 2020. "A framework for modeling interdependencies among households, businesses, and infrastructure systems; and their response to disruptions," Papers 2006.05678, arXiv.org.
  • Handle: RePEc:arx:papers:2006.05678
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2006.05678
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Setola, Roberto & De Porcellinis, Stefano & Sforna, Marino, 2009. "Critical infrastructure dependency assessment using the input–output inoperability model," International Journal of Critical Infrastructure Protection, Elsevier, vol. 2(4), pages 170-178.
    2. Eusgeld, Irene & Nan, Cen & Dietz, Sven, 2011. "“System-of-systems†approach for interdependent critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 679-686.
    3. Francis, Royce & Bekera, Behailu, 2014. "A metric and frameworks for resilience analysis of engineered and infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 90-103.
    4. Zhang, Pengcheng & Peeta, Srinivas, 2011. "A generalized modeling framework to analyze interdependencies among infrastructure systems," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 553-579, March.
    5. R. Kinney & P. Crucitti & R. Albert & V. Latora, 2005. "Modeling cascading failures in the North American power grid," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 46(1), pages 101-107, July.
    6. Celian Colon & Stephane Hallegatte & Julie Rozenberg, 2019. "Transportation and Supply Chain Resilience in the United Republic of Tanzania," World Bank Publications - Reports 31909, The World Bank Group.
    7. Bowles, Samuel, 1985. "The Production Process in a Competitive Economy: Walrasian, Neo-Hobbesian, and Marxian Models," American Economic Review, American Economic Association, vol. 75(1), pages 16-36, March.
    8. Yacov Y. Haimes, 2009. "On the Definition of Resilience in Systems," Risk Analysis, John Wiley & Sons, vol. 29(4), pages 498-501, April.
    9. Lubos Buzna & Limor Issacharoff & Dirk Helbing, 2009. "The evolution of the topology of high-voltage electricity networks," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 5(1/2), pages 72-85.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dubaniowski, Mateusz Iwo & Heinimann, Hans Rudolf, 2021. "Framework for modeling interdependencies between households, businesses, and infrastructure system, and their response to disruptions—application," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    2. Sharma, Neetesh & Gardoni, Paolo, 2022. "Mathematical modeling of interdependent infrastructure: An object-oriented approach for generalized network-system analysis," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Ma, Xiangyu & Zhou, Huijie & Li, Zhiyi, 2021. "On the resilience of modern power systems: A complex network perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    4. Valaei Sharif, Shahab & Habibi Moshfegh, Peyman & Kashani, Hamed, 2023. "Simulation modeling of operation and coordination of agencies involved in post-disaster response and recovery," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    5. Mateusz Iwo Dubaniowski & Hans Rudolf Heinimann, 2021. "Time Granularity Impact on Propagation of Disruptions in a System-of-Systems Simulation of Infrastructure and Business Networks," IJERPH, MDPI, vol. 18(8), pages 1-24, April.
    6. Munikoti, Sai & Lai, Kexing & Natarajan, Balasubramaniam, 2021. "Robustness assessment of Hetero-functional graph theory based model of interdependent urban utility networks," Reliability Engineering and System Safety, Elsevier, vol. 212(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dubaniowski, Mateusz Iwo & Heinimann, Hans Rudolf, 2020. "A framework for modeling interdependencies among households, businesses, and infrastructure systems; and their response to disruptions," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    2. Ahmadi, Somayeh & Saboohi, Yadollah & Vakili, Ali, 2021. "Frameworks, quantitative indicators, characters, and modeling approaches to analysis of energy system resilience: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Fang, Zhixiang & Shaw, Shih-Lung & Tu, Wei & Li, Qingquan & Li, Yuguang, 2012. "Spatiotemporal analysis of critical transportation links based on time geographic concepts: a case study of critical bridges in Wuhan, China," Journal of Transport Geography, Elsevier, vol. 23(C), pages 44-59.
    4. Ouyang, Min & Dueñas-Osorio, Leonardo, 2011. "An approach to design interface topologies across interdependent urban infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1462-1473.
    5. Kong, Jingjing & Zhang, Chao & Simonovic, Slobodan P., 2021. "Optimizing the resilience of interdependent infrastructures to regional natural hazards with combined improvement measures," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    6. Dubaniowski, Mateusz Iwo & Heinimann, Hans Rudolf, 2021. "Framework for modeling interdependencies between households, businesses, and infrastructure system, and their response to disruptions—application," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    7. Younesi, Abdollah & Shayeghi, Hossein & Wang, Zongjie & Siano, Pierluigi & Mehrizi-Sani, Ali & Safari, Amin, 2022. "Trends in modern power systems resilience: State-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    8. Yifan Yang & S. Thomas Ng & Frank J. Xu & Martin Skitmore & Shenghua Zhou, 2019. "Towards Resilient Civil Infrastructure Asset Management: An Information Elicitation and Analytical Framework," Sustainability, MDPI, vol. 11(16), pages 1-24, August.
    9. Ivo Häring & Mirjam Fehling-Kaschek & Natalie Miller & Katja Faist & Sebastian Ganter & Kushal Srivastava & Aishvarya Kumar Jain & Georg Fischer & Kai Fischer & Jörg Finger & Alexander Stolz & Tobias , 2021. "A performance-based tabular approach for joint systematic improvement of risk control and resilience applied to telecommunication grid, gas network, and ultrasound localization system," Environment Systems and Decisions, Springer, vol. 41(2), pages 286-329, June.
    10. Almoghathawi, Yasser & Barker, Kash & Albert, Laura A., 2019. "Resilience-driven restoration model for interdependent infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 12-23.
    11. Corinne Curt & Jean‐Marc Tacnet, 2018. "Resilience of Critical Infrastructures: Review and Analysis of Current Approaches," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2441-2458, November.
    12. Xu, Zhaoping & Ramirez-Marquez, Jose Emmanuel & Liu, Yu & Xiahou, Tangfan, 2020. "A new resilience-based component importance measure for multi-state networks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    13. Wang, Weiping & Yang, Saini & Hu, Fuyu & Stanley, H. Eugene & He, Shuai & Shi, Mimi, 2018. "An approach for cascading effects within critical infrastructure systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 164-177.
    14. Cinta Lomba-Fernández & Josune Hernantes & Leire Labaka, 2019. "Guide for Climate-Resilient Cities: An Urban Critical Infrastructures Approach," Sustainability, MDPI, vol. 11(17), pages 1-19, August.
    15. Liu, Xing & Fang, Yi-Ping & Zio, Enrico, 2021. "A Hierarchical Resilience Enhancement Framework for Interdependent Critical Infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    16. Petar Radanliev & David Roure & Max Kleek & Uchenna Ani & Pete Burnap & Eirini Anthi & Jason R. C. Nurse & Omar Santos & Rafael Mantilla Montalvo & La’Treall Maddox, 2021. "Dynamic real-time risk analytics of uncontrollable states in complex internet of things systems: cyber risk at the edge," Environment Systems and Decisions, Springer, vol. 41(2), pages 236-247, June.
    17. Jingjing Kong & Slobodan P. Simonovic & Chao Zhang, 2019. "Resilience Assessment of Interdependent Infrastructure Systems: A Case Study Based on Different Response Strategies," Sustainability, MDPI, vol. 11(23), pages 1-31, November.
    18. Linn Svegrup & Jonas Johansson & Henrik Hassel, 2019. "Integration of Critical Infrastructure and Societal Consequence Models: Impact on Swedish Power System Mitigation Decisions," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1970-1996, September.
    19. Kumar, Nikhil & Poonia, Vikas & Gupta, B.B. & Goyal, Manish Kumar, 2021. "A novel framework for risk assessment and resilience of critical infrastructure towards climate change," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    20. Robertson, Lindsay J. & Michael, Katina & Munoz, Albert, 2017. "Assessing technology system contributions to urban dweller vulnerabilities," Technology in Society, Elsevier, vol. 50(C), pages 83-92.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2006.05678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.