IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1910.11570.html
   My bibliography  Save this paper

Does car sharing reduce greenhouse gas emissions? Life cycle assessment of the modal shift and lifetime shift rebound effects

Author

Listed:
  • Levon Amatuni
  • Juudit Ottelin
  • Bernhard Steubing
  • Jos'e Mogollon

Abstract

Car-sharing platforms provide access to a shared rather than a private fleet of automobiles distributed in the region. Participation in such services induces changes in mobility behaviour as well as vehicle ownership patterns that could have positive environmental impacts. This study contributes to the understanding of the total mobility-related greenhouse gas emissions reduction related to business-to-consumer car-sharing participation. A comprehensive model which takes into account distances travelled annually by the major urban transport modes as well as their life-cycle emissions factors is proposed, and the before-and-after analysis is conducted for an average car-sharing member in three geographical cases (Netherlands, San Francisco, Calgary). In addition to non-operational emissions for all the transport modes involved, this approach considers the rebound effects associated with the modal shift effect (substituting driving distances with alternative modes) and the lifetime shift effect for the shared automobiles, phenomena which have been barely analysed in the previous studies. As a result, in contrast to the previous impact assessments in the field, a significantly more modest reduction of the annual total mobility-related life-cycle greenhouse gas emissions caused by car-sharing participation has been estimated, 3-18% for three geographical case studies investigated (versus up to 67% estimated previously). This suggests the significance of the newly considered effects and provides with the practical implications for improved assessments in the future.

Suggested Citation

  • Levon Amatuni & Juudit Ottelin & Bernhard Steubing & Jos'e Mogollon, 2019. "Does car sharing reduce greenhouse gas emissions? Life cycle assessment of the modal shift and lifetime shift rebound effects," Papers 1910.11570, arXiv.org.
  • Handle: RePEc:arx:papers:1910.11570
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1910.11570
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chester, Mikhail V, 2008. "Life-cycle Environmental Inventory of Passenger Transportation in the United States," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7n29n303, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jariyasunant, Jerald & Carrel, Andre & Ekambaram, Venkatesan & Gaker, David & Sengupta, Raja & Walker, Joan L., 2012. "The Quantified Traveler: Changing transport behavior with personalized travel data feedback," University of California Transportation Center, Working Papers qt3047k0dw, University of California Transportation Center.
    2. Sofiia Miliutenko & Ingeborg Kluts & Kristina Lundberg & Susanna Toller & Helge Brattebø & Harpa Birgisdóttir & José Potting, 2014. "Consideration Of Life Cycle Energy Use And Greenhouse Gas Emissions In Road Infrastructure Planning Processes: Examples Of Sweden, Norway, Denmark And The Netherlands," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1-26.
    3. Jariyasunant, Jerald & Carrel, Andre & Ekambaram, Venkatesan & Gaker, DJ & Kote, Thejovardhana & Sengupta, Raja & Walker, Joan L., 2011. "The Quantified Traveler: Using personal travel data to promote sustainable transport behavior," University of California Transportation Center, Working Papers qt9jg0p1rj, University of California Transportation Center.
    4. Wojciech SZYMALSKI, 2021. "Energy And Co 2 Emission Intensities Of Various Modes Of Passenger Transport In Warsaw," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 16(2), pages 131-140, June.
    5. Christian Spreafico & Davide Russo, 2020. "Exploiting the Scientific Literature for Performing Life Cycle Assessment about Transportation," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    6. Jariyasunant, Jerald & Carrel, Andre & Ekambaram, Venkatesan & Gaker, DJ & Kote, Thejovardhana & Sengupta, Raja & Walker, Joan L., 2011. "The Quantified Traveler: Using personal travel data to promote sustainable transport behavior," University of California Transportation Center, Working Papers qt678537sx, University of California Transportation Center.
    7. Michael Minn, 2019. "Contested Power: American Long-Distance Passenger Rail and the Ambiguities of Energy Intensity Analysis," Sustainability, MDPI, vol. 11(4), pages 1-20, February.
    8. Ana María Arbeláez Vélez & Andrius Plepys, 2021. "Car Sharing as a Strategy to Address GHG Emissions in the Transport System: Evaluation of Effects of Car Sharing in Amsterdam," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
    9. Ryerson, Megan S., 2010. "Optimal Intercity Transportation Services with Heterogeneous Demand and Variable Fuel Price," University of California Transportation Center, Working Papers qt8696z26t, University of California Transportation Center.
    10. Kristoffer W. Lie & Trym A. Synnevåg & Jacob J. Lamb & Kristian M. Lien, 2021. "The Carbon Footprint of Electrified City Buses: A Case Study in Trondheim, Norway," Energies, MDPI, vol. 14(3), pages 1-21, February.
    11. Simon Robertson, 2013. "High-speed rail's potential for the reduction of carbon dioxide emissions from short haul aviation: a longitudinal study of modal substitution from an energy generation and renewable energy perspectiv," Transportation Planning and Technology, Taylor & Francis Journals, vol. 36(5), pages 395-412, July.
    12. Ali Azhar Butt & John Harvey & Arash Saboori & Maryam Ostovar & Manuel Bejarano & Navneet Garg, 2020. "Decision Support in Selecting Airfield Pavement Design Alternatives Using Life Cycle Assessment: Case Study of Nashville Airport," Sustainability, MDPI, vol. 13(1), pages 1-19, December.
    13. Rohacs, Jozsef & Rohacs, Daniel, 2020. "Energy coefficients for comparison of aircraft supported by different propulsion systems," Energy, Elsevier, vol. 191(C).
    14. Antonia Rahn & Kai Wicke & Gerko Wende, 2022. "Using Discrete-Event Simulation for a Holistic Aircraft Life Cycle Assessment," Sustainability, MDPI, vol. 14(17), pages 1-31, August.
    15. Rajib Sinha & Lars E. Olsson & Björn Frostell, 2019. "Sustainable Personal Transport Modes in a Life Cycle Perspective—Public or Private?," Sustainability, MDPI, vol. 11(24), pages 1-13, December.
    16. Peng Du & Antony Wood & Brent Stephens, 2016. "Empirical Operational Energy Analysis of Downtown High-Rise vs. Suburban Low-Rise Lifestyles: A Chicago Case Study," Energies, MDPI, vol. 9(6), pages 1-27, June.
    17. Jariyasunant, Jerald & Abou-Zeid, Maya & Carrel, Andre & Ekambaram, Venkatesan & Gaker, David & Sengupta, Raja & Walker, Joan L., 2013. "Quantified Traveler: Travel Feedback Meets the Cloud to Change Behavior," University of California Transportation Center, Working Papers qt2dh952gj, University of California Transportation Center.
    18. Tiago Ramos da Silva & Bruna Moura & Helena Monteiro, 2023. "Life Cycle Assessment of Current Portuguese Railway and Future Decarbonization Scenarios," Sustainability, MDPI, vol. 15(14), pages 1-15, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1910.11570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.