Framework for Integration of Health Monitoring Systems in Life Cycle Management for Aviation Sustainability and Cost Efficiency
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Atılgan, Ramazan & Turan, Önder & Altuntaş, Önder & Aydın, Hakan & Synylo, Kateryna, 2013. "Environmental impact assessment of a turboprop engine with the aid of exergy," Energy, Elsevier, vol. 58(C), pages 664-671.
- Rosario Vidal & Enrique Moliner & Pedro P. Martin & Sergio Fita & Maik Wonneberger & Eva Verdejo & François Vanfleteren & Nieves Lapeña & Ana González, 2018. "Life Cycle Assessment of Novel Aircraft Interior Panels Made from Renewable or Recyclable Polymers with Natural Fiber Reinforcements and Non†Halogenated Flame Retardants," Journal of Industrial Ecology, Yale University, vol. 22(1), pages 132-144, February.
- Dennis Keiser & Michael Arenz & Michael Freitag & Matthias Reiß, 2023. "Method to Model the Environmental Impacts of Aircraft Cabin Configurations during the Operational Phase," Sustainability, MDPI, vol. 15(6), pages 1-27, March.
- repec:cdl:itsrrp:qt7n29n303 is not listed on IDEAS
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Viktoriia Ivannikova & Maksym Zaliskyi & Oleksandr Solomentsev & Ivan Ostroumov & Nataliia Kuzmenko, 2025. "Statistical Data Processing Technologies for Sustainable Aviation: A Case Study of Ukraine," Sustainability, MDPI, vol. 17(13), pages 1-33, June.
- Igor Kabashkin & Vitaly Susanin, 2024. "Decision-Making Model for Life Cycle Management of Aircraft Components," Mathematics, MDPI, vol. 12(22), pages 1-43, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yusra Hasan & Ishak Hasan & Amir A. Aliabadi & Bahram Gharabaghi, 2025. "Comparative Life Cycle Assessment (LCA) in the Aerospace Industry Regarding Aviation Seat Frame Options," Sustainability, MDPI, vol. 17(7), pages 1-14, April.
- Antonia Rahn & Kai Wicke & Gerko Wende, 2022. "Using Discrete-Event Simulation for a Holistic Aircraft Life Cycle Assessment," Sustainability, MDPI, vol. 14(17), pages 1-31, August.
- Aygun, Hakan & Turan, Onder, 2021. "Exergo-economic analysis of off-design a target drone engine for reconnaissance mission flight," Energy, Elsevier, vol. 224(C).
- Atilgan, Ramazan & Onder Turan,, 2020. "Economy and exergy of aircraft turboprop engine at dynamic loads," Energy, Elsevier, vol. 213(C).
- Yurdusevimli Metin, Ece & Aygün, Hakan, 2019. "Energy and power aspects of an experimental target drone engine at non-linear controller loads," Energy, Elsevier, vol. 185(C), pages 981-993.
- Kirmizi, Mehmet & Aygun, Hakan & Turan, Onder, 2023. "Performance and energy analysis of turboprop engine for air freighter aircraft with the aid of multiple regression," Energy, Elsevier, vol. 283(C).
- Aygun, Hakan & Kirmizi, Mehmet & Turan, Onder, 2022. "Propeller effects on energy, exergy and sustainability parameters of a small turboprop engine," Energy, Elsevier, vol. 249(C).
- Burak Yuksel & Ozgur Balli & Huseyin Gunerhan & Arif Hepbasli, 2020. "Comparative Performance Metric Assessment of A Military Turbojet Engine Utilizing Hydrogen And Kerosene Fuels Through Advanced Exergy Analysis Method," Energies, MDPI, vol. 13(5), pages 1-22, March.
- Nahed Bahman, 2023. "Airport sustainability through life cycle assessments: A systematic literature review," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(3), pages 1268-1277, June.
- Pablo Resende Oliveira & Sebastian Kilchert & Michael May & Tulio Hallak Panzera & Fabrizio Scarpa & Stefan Hiermaier, 2022. "Environmental assessment of discarded plastic caps as a honeycomb core: An eco‐mechanical perspective," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 643-654, April.
- Turan, Onder, 2022. "Exergo-economic analysis of a CFM56-7B turbofan engine," Energy, Elsevier, vol. 259(C).
- Turan, Önder & Aydın, Hakan, 2016. "Numerical calculation of energy and exergy flows of a turboshaft engine for power generation and helicopter applications," Energy, Elsevier, vol. 115(P1), pages 914-923.
- Burak Yuksel & Huseyin Gunerhan & Arif Hepbasli, 2020. "Assessing Exergy-Based Economic and Sustainability Analyses of a Military Gas Turbine Engine Fueled with Various Fuels," Energies, MDPI, vol. 13(15), pages 1-28, July.
- Balli, Ozgur, 2022. "Thermodynamic, thermoenvironmental and thermoeconomic analyses of piston-prop engines (PPEs) for landing and take-off (LTO) flight phases," Energy, Elsevier, vol. 250(C).
- Balli, Ozgur & Kale, Utku & Rohács, Dániel & Hikmet Karakoc, T., 2022. "Environmental damage cost and exergoenvironmental evaluations of piston prop aviation engines for the landing and take-off flight phases," Energy, Elsevier, vol. 261(PB).
- Gharagheizi, Farhad & Ilani-Kashkouli, Poorandokht & Mohammadi, Amir H. & Ramjugernath, Deresh, 2014. "A group contribution method for determination of the standard molar chemical exergy of organic compounds," Energy, Elsevier, vol. 70(C), pages 288-297.
- Sogut, M. Ziya, 2020. "Assessment of small scale turbojet engine considering environmental and thermodynamics performance for flight processes," Energy, Elsevier, vol. 200(C).
- Rodrigues Dias, Veruska Mazza & Jugend, Daniel & de Camargo Fiorini, Paula & Razzino, Carlos do Amaral & Paula Pinheiro, Marco Antonio, 2022. "Possibilities for applying the circular economy in the aerospace industry: Practices, opportunities and challenges," Journal of Air Transport Management, Elsevier, vol. 102(C).
- Keçebaş, Ali, 2016. "Exergoenvironmental analysis for a geothermal district heating system: An application," Energy, Elsevier, vol. 94(C), pages 391-400.
- Baklacioglu, Tolga & Turan, Onder & Aydin, Hakan, 2015. "Dynamic modeling of exergy efficiency of turboprop engine components using hybrid genetic algorithm-artificial neural networks," Energy, Elsevier, vol. 86(C), pages 709-721.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:6154-:d:1438053. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i14p6154-d1438053.html