IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v26y2022i2p643-654.html
   My bibliography  Save this article

Environmental assessment of discarded plastic caps as a honeycomb core: An eco‐mechanical perspective

Author

Listed:
  • Pablo Resende Oliveira
  • Sebastian Kilchert
  • Michael May
  • Tulio Hallak Panzera
  • Fabrizio Scarpa
  • Stefan Hiermaier

Abstract

The extensive disposal of plastic components into the environment requires an economically and ecologically feasible solution for the proper treatment or new uses for plastic waste. This study compares the environmental and mechanical performance of a sandwich panel based on disposed bottle caps core with different eco‐friendly skins and adhesive. A cradle‐to‐gate life cycle assessment compares the environmental impacts of the manufacture of six‐bottle cap panel designs with various skin (aluminum, recycled PET, and flax laminates) and adhesive types (epoxy vs. biopolymer) by calculating their ReCiPe midpoint impact indicators. An eco‐mechanical indicator is additionally proposed to measure the efficiency of designs with greater strength/stiffness and less environmental footprint. The bio‐based skin on the sandwich panel significantly reduces environmental damage between 32% and 87% compared to metallic skins. Recycled skin promotes the lowest impacts, while considerably reducing mechanical performance. The bio‐based adhesive has emissions up to 15% lower than epoxy. The eco‐mechanical balance showed up to 630% higher efficiency for bottle cap panel designs based on bio‐based polymer, flax‐based skins, and/or less adhesive depending on the mechanical response. Promising environmental performance with superior mechanical strength highlights the potential of bottle caps as an eco‐friendly honeycomb for secondary construction and transport structures.

Suggested Citation

  • Pablo Resende Oliveira & Sebastian Kilchert & Michael May & Tulio Hallak Panzera & Fabrizio Scarpa & Stefan Hiermaier, 2022. "Environmental assessment of discarded plastic caps as a honeycomb core: An eco‐mechanical perspective," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 643-654, April.
  • Handle: RePEc:bla:inecol:v:26:y:2022:i:2:p:643-654
    DOI: 10.1111/jiec.13211
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13211
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13211?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Markus Gall & Andrea Schweighuber & Wolfgang Buchberger & Reinhold W. Lang, 2020. "Plastic Bottle Cap Recycling—Characterization of Recyclate Composition and Opportunities for Design for Circularity," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    2. Tomas Ekvall, 2020. "Attributional and Consequential Life Cycle Assessment," Chapters, in: Maria Jose Bastante-Ceca & Jose Luis Fuentes-Bargues & Levente Hufnagel & Florin-Constantin Mihai & (ed.), Sustainability Assessment at the 21st century, IntechOpen.
    3. Maria Jose Bastante-Ceca & Jose Luis Fuentes-Bargues & Levente Hufnagel & Florin-Constantin Mihai & (ed.), 2020. "Sustainability Assessment at the 21st century," Books, IntechOpen, number 6096.
    4. Rosario Vidal & Enrique Moliner & Pedro P. Martin & Sergio Fita & Maik Wonneberger & Eva Verdejo & François Vanfleteren & Nieves Lapeña & Ana González, 2018. "Life Cycle Assessment of Novel Aircraft Interior Panels Made from Renewable or Recyclable Polymers with Natural Fiber Reinforcements and Non†Halogenated Flame Retardants," Journal of Industrial Ecology, Yale University, vol. 22(1), pages 132-144, February.
    5. Franz Segovia & Pierre Blanchet & Ben Amor & Costel Barbuta & Robert Beauregard, 2019. "Life Cycle Assessment Contribution in the Product Development Process: Case Study of Wood Aluminum-Laminated Panel," Sustainability, MDPI, vol. 11(8), pages 1-20, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamás Mizik, 2021. "Economic Aspects and Sustainability of Ethanol Production—A Systematic Literature Review," Energies, MDPI, vol. 14(19), pages 1-25, September.
    2. Rüdisüli, Martin & Romano, Elliot & Eggimann, Sven & Patel, Martin K., 2022. "Decarbonization strategies for Switzerland considering embedded greenhouse gas emissions in electricity imports," Energy Policy, Elsevier, vol. 162(C).
    3. Xavier Tanguay & Gatien Geraud Essoua Essoua & Ben Amor, 2021. "Attributional and consequential life cycle assessments in a circular economy with integration of a quality indicator: A case study of cascading wood products," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1462-1473, December.
    4. Miguel Vigil & Maria Pedrosa-Laza & JV Alvarez Cabal & Francisco Ortega-Fernández, 2020. "Sustainability Analysis of Active Packaging for the Fresh Cut Vegetable Industry by Means of Attributional & Consequential Life Cycle Assessment," Sustainability, MDPI, vol. 12(17), pages 1-18, September.
    5. Adriana Gómez-Cabrera & Amalia Sanz-Benlloch & Laura Montalban-Domingo & Jose Luis Ponz-Tienda & Eugenio Pellicer, 2020. "Identification of Factors Affecting the Performance of Rural Road Projects in Colombia," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    6. Marvuglia, Antonino & Benetto, Enrico & Rege, Sameer & Jury, Colin, 2013. "Modelling approaches for consequential life-cycle assessment (C-LCA) of bioenergy: Critical review and proposed framework for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 768-781.
    7. Anders S. G. Andrae & Mengjun Xia & Jianli Zhang & Xiaoming Tang, 2016. "Practical Eco-Design and Eco-Innovation of Consumer Electronics—the Case of Mobile Phones," Challenges, MDPI, vol. 7(1), pages 1-19, February.
    8. Dandres, Thomas & Gaudreault, Caroline & Tirado-Seco, Pablo & Samson, Réjean, 2011. "Assessing non-marginal variations with consequential LCA: Application to European energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3121-3132, August.
    9. Joyce Cooper & Randall Jackson & Nancey Green Leigh, 2013. "Computational structure for linking life cycle assessment and input–output modeling: a case study on urban recycling and remanufacturing," Chapters, in: Frank Giarratani & Geoffrey J.D. Hewings & Philip McCann (ed.), Handbook of Industry Studies and Economic Geography, chapter 14, pages 355-370, Edward Elgar Publishing.
    10. Rodrigues Dias, Veruska Mazza & Jugend, Daniel & de Camargo Fiorini, Paula & Razzino, Carlos do Amaral & Paula Pinheiro, Marco Antonio, 2022. "Possibilities for applying the circular economy in the aerospace industry: Practices, opportunities and challenges," Journal of Air Transport Management, Elsevier, vol. 102(C).
    11. Malça, João & Freire, Fausto, 2011. "Life-cycle studies of biodiesel in Europe: A review addressing the variability of results and modeling issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 338-351, January.
    12. Jaller, Miguel & Harvey, John T. & Saremi, Sogol & Ambrose, Hanjiro & Butt, Ali A., 2018. "Development of a Freight System Conceptualization and Impact Assessment (Fre‐SCANDIA) Framework," Institute of Transportation Studies, Working Paper Series qt05g8p7tn, Institute of Transportation Studies, UC Davis.
    13. Thomas Schaubroeck & Simon Schaubroeck & Reinout Heijungs & Alessandra Zamagni & Miguel Brandão & Enrico Benetto, 2021. "Attributional & Consequential Life Cycle Assessment: Definitions, Conceptual Characteristics and Modelling Restrictions," Sustainability, MDPI, vol. 13(13), pages 1-47, July.
    14. Kun Mo LEE & Min Hyeok LEE, 2021. "Uncertainty of the Electricity Emission Factor Incorporating the Uncertainty of the Fuel Emission Factors," Energies, MDPI, vol. 14(18), pages 1-14, September.
    15. M. Mobeen Shaukat & Farhan Ashraf & Muhammad Asif & Sulaman Pashah & Mohamed Makawi, 2022. "Environmental Impact Analysis of Oil and Gas Pipe Repair Techniques Using Life Cycle Assessment (LCA)," Sustainability, MDPI, vol. 14(15), pages 1-11, August.
    16. Vaidehi Pathak & Sameer Deshkar, 2023. "Transitions towards Sustainable and Resilient Rural Areas in Revitalising India: A Framework for Localising SDGs at Gram Panchayat Level," Sustainability, MDPI, vol. 15(9), pages 1-23, May.
    17. Esra Aleisa & Reinout Heijungs, 2022. "Leveraging Life Cycle Assessment to Better Promote the Circular Economy: A First Step Using the Concept of Opportunity Cost," Sustainability, MDPI, vol. 14(6), pages 1-17, March.
    18. Pamela Del Rosario & Elisabetta Palumbo & Marzia Traverso, 2021. "Environmental Product Declarations as Data Source for the Environmental Assessment of Buildings in the Context of Level(s) and DGNB: How Feasible Is Their Adoption?," Sustainability, MDPI, vol. 13(11), pages 1-22, May.
    19. Ana-Maria Opria & Lucian Roșu & Corneliu Iațu, 2021. "LEADER Program—An Inclusive or Selective Instrument for the Development of Rural Space in Romania?," Sustainability, MDPI, vol. 13(21), pages 1-21, November.
    20. Mieczysław Adamowicz & Magdalena Zwolińska-Ligaj, 2020. "The “Smart Village” as a Way to Achieve Sustainable Development in Rural Areas of Poland," Sustainability, MDPI, vol. 12(16), pages 1-28, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:26:y:2022:i:2:p:643-654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.