IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1910.03421.html
   My bibliography  Save this paper

Estimating and decomposing most productive scale size in parallel DEA networks with shared inputs: A case of China's Five-Year Plans

Author

Listed:
  • Saeed Assani
  • Jianlin Jiang
  • Ahmad Assani
  • Feng Yang

Abstract

Attaining the optimal scale size of production systems is an issue frequently found in the priority questions on management agendas of various types of organizations. Determining the most productive scale size (MPSS) allows the decision makers not only to know the best scale size that their systems can achieve but also to tell the decision makers how to move the inefficient systems onto the MPSS region. This paper investigates the MPSS concept for production systems consisting of multiple subsystems connected in parallel. First, we propose a relational model where the MPSS of the whole system and the internal subsystems are measured in a single DEA implementation. Then, it is proved that the MPSS of the system can be decomposed as the weighted sum of the MPSS of the individual subsystems. The main result is that the system is overall MPSS if and only if it is MPSS in each subsystem. MPSS decomposition allows the decision makers to target the non-MPSS subsystems so that the necessary improvements can be readily suggested. An application of China's Five-Year Plans (FYPs) with shared inputs is used to show the applicability of the proposed model for estimating and decomposing MPSS in parallel network DEA. Industry and Agriculture sectors are selected as two parallel subsystems in the FYPs. Interesting findings have been noticed. Using the same amount of resources, the Industry sector had a better economic scale than the Agriculture sector. Furthermore, the last two FYPs, 11th and 12th, were the perfect two FYPs among the others.

Suggested Citation

  • Saeed Assani & Jianlin Jiang & Ahmad Assani & Feng Yang, 2019. "Estimating and decomposing most productive scale size in parallel DEA networks with shared inputs: A case of China's Five-Year Plans," Papers 1910.03421, arXiv.org, revised Oct 2019.
  • Handle: RePEc:arx:papers:1910.03421
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1910.03421
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Joe, 2000. "Further discussion on linear production functions and DEA," European Journal of Operational Research, Elsevier, vol. 127(3), pages 611-618, December.
    2. Yande Gong & Joe Zhu & Ya Chen & Wade D. Cook, 2018. "DEA as a tool for auditing: application to Chinese manufacturing industry with parallel network structures," Annals of Operations Research, Springer, vol. 263(1), pages 247-269, April.
    3. Li, Nan & Jiang, Yuqing & Mu, Hailin & Yu, Zhixin, 2018. "Efficiency evaluation and improvement potential for the Chinese agricultural sector at the provincial level based on data envelopment analysis (DEA)," Energy, Elsevier, vol. 164(C), pages 1145-1160.
    4. Joe Zhu, 2014. "Envelopment DEA Models," International Series in Operations Research & Management Science, in: Quantitative Models for Performance Evaluation and Benchmarking, edition 3, chapter 2, pages 11-48, Springer.
    5. Dariush Khezrimotlagh & Yao Chen, 2018. "Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Decision Making and Performance Evaluation Using Data Envelopment Analysis, chapter 0, pages 217-234, Springer.
    6. Banker, Rajiv D. & Cooper, William W. & Seiford, Lawrence M. & Thrall, Robert M. & Zhu, Joe, 2004. "Returns to scale in different DEA models," European Journal of Operational Research, Elsevier, vol. 154(2), pages 345-362, April.
    7. J. Steven Landefeld & Eugene P. Seskin & Barbara M. Fraumeni, 2008. "Taking the Pulse of the Economy: Measuring GDP," Journal of Economic Perspectives, American Economic Association, vol. 22(2), pages 193-216, Spring.
    8. A. Davoodi & M. Zarepisheh & H. Rezai, 2015. "The nearest MPSS pattern in data envelopment analysis," Annals of Operations Research, Springer, vol. 226(1), pages 163-176, March.
    9. Banker, Rajiv D., 1984. "Estimating most productive scale size using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 17(1), pages 35-44, July.
    10. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    11. Lee, Chia-Yen, 2016. "Most productive scale size versus demand fulfillment: A solution to the capacity dilemma," European Journal of Operational Research, Elsevier, vol. 248(3), pages 954-962.
    12. Joe Zhu, 2014. "Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Quantitative Models for Performance Evaluation and Benchmarking, edition 3, chapter 1, pages 1-9, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saeed Assani & Jianlin Jiang & Ahmad Assani & Feng Yang, 2019. "Most productive scale size of China's regional R&D value chain: A mixed structure network," Papers 1910.03805, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eshagh Esfandiar & Robabeh Eslami & Mohammad Khoveyni & Alireza Gilani, 2023. "Identifying the closest most productive scale size unit in data envelopment analysis," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(2), pages 623-660, June.
    2. Khezrimotlagh, Dariush & Kaffash, Sepideh & Zhu, Joe, 2022. "U.S. airline mergers’ performance and productivity change," Journal of Air Transport Management, Elsevier, vol. 102(C).
    3. da Silva, Aneirson Francisco & Miranda, Rafael de Carvalho & Marins, Fernando Augusto Silva & Dias, Erica Ximenes, 2024. "A new multiple criteria data envelopment analysis with variable return to scale: Applying bi-dimensional representation and super-efficiency analysis," European Journal of Operational Research, Elsevier, vol. 314(1), pages 308-322.
    4. Amar Oukil & Slim Zekri, 2021. "Investigating farming efficiency through a two stage analytical approach: Application to the agricultural sector in Northern Oman," Papers 2104.10943, arXiv.org.
    5. Forsund, Finn R. & Sarafoglou, Nikias, 2005. "The tale of two research communities: The diffusion of research on productive efficiency," International Journal of Production Economics, Elsevier, vol. 98(1), pages 17-40, October.
    6. Meng, Fanyong & Xiong, Beibei, 2021. "Logical efficiency decomposition for general two-stage systems in view of cross efficiency," European Journal of Operational Research, Elsevier, vol. 294(2), pages 622-632.
    7. Trinks, Arjan & Mulder, Machiel & Scholtens, Bert, 2020. "An Efficiency Perspective on Carbon Emissions and Financial Performance," Ecological Economics, Elsevier, vol. 175(C).
    8. Cesaroni, Giovanni & Kerstens, Kristiaan & Van de Woestyne, Ignace, 2017. "Global and local scale characteristics in convex and nonconvex nonparametric technologies: A first empirical exploration," European Journal of Operational Research, Elsevier, vol. 259(2), pages 576-586.
    9. Zarepisheh, M. & Soleimani-damaneh, M., 2009. "A dual simplex-based method for determination of the right and left returns to scale in DEA," European Journal of Operational Research, Elsevier, vol. 194(2), pages 585-591, April.
    10. Sahoo, Biresh K & Khoveyni, Mohammad & Eslami, Robabeh & Chaudhury, Pradipta, 2016. "Returns to scale and most productive scale size in DEA with negative data," European Journal of Operational Research, Elsevier, vol. 255(2), pages 545-558.
    11. Kaffash, Sepideh & Azizi, Roza & Huang, Ying & Zhu, Joe, 2020. "A survey of data envelopment analysis applications in the insurance industry 1993–2018," European Journal of Operational Research, Elsevier, vol. 284(3), pages 801-813.
    12. Taleb, Mushtaq & Khalid, Ruzelan & Ramli, Razamin & Ghasemi, Mohammad Reza & Ignatius, Joshua, 2022. "An integrated bi-objective data envelopment analysis model for measuring returns to scale," European Journal of Operational Research, Elsevier, vol. 296(3), pages 967-979.
    13. Wang, Ying-Ming & Lan, Yi-Xin, 2013. "Estimating most productive scale size with double frontiers data envelopment analysis," Economic Modelling, Elsevier, vol. 33(C), pages 182-186.
    14. Antonio Peyrache & Maria C. A. Silva, 2022. "Efficiency and Productivity Analysis from a System Perspective: Historical Overview," Springer Books, in: Duangkamon Chotikapanich & Alicia N. Rambaldi & Nicholas Rohde (ed.), Advances in Economic Measurement, chapter 0, pages 173-230, Springer.
    15. Harald Dyckhoff, 2018. "Multi-criteria production theory: foundation of non-financial and sustainability performance evaluation," Journal of Business Economics, Springer, vol. 88(7), pages 851-882, September.
    16. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    17. M Soleimani-damaneh, 2009. "A fast algorithm for determining some characteristics in DEA," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(11), pages 1528-1534, November.
    18. Subhash C. Ray, 2014. "Data Envelopment Analysis: An Overview," Working papers 2014-33, University of Connecticut, Department of Economics.
    19. Torben Schubert & Guoliang Yang, 2016. "Institutional change and the optimal size of universities," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1129-1153, September.
    20. Xiong, Beibei & Chen, Haoxun & An, Qingxian & Wu, Jie, 2019. "A multi-objective distance friction minimization model for performance assessment through data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 279(1), pages 132-142.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1910.03421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.